62 research outputs found

    LKR/SDH Plays Important Roles throughout the Tick Life Cycle Including a Long Starvation Period

    Get PDF
    BACKGROUND:Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. METHODOLOGY/PRINCIPAL FINDINGS:We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. CONCLUSIONS/SIGNIFICANCE:Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods

    "Now I know the terrain": phenomenological exploration of CFTs learning on evidence-based practice

    Get PDF
    Couple and family therapists are rarely the focus of research yet are critical for positive outcomes in therapy. The attempts to integrate evidence-based approaches into the practice of couple and family therapy have been controversial resulting in passionate and at times divisive dialogue. The aims of this research project were to explore what do couple and family therapists experience when learning an evidence-based approach to working with couples and families. A total of 14 couple and family therapists were interviewed about their experience with learning an evidence-based approach. The research was guided methodologically by interpretive phenomenological analysis. Three themes emerged from the participants’ experiences including: the supports and challenges in learning; the embodiment of a therapy practice; and the experience of shame while learning

    The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: Molecular characterization, functional properties, and expression analysis

    No full text
    Background: Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results: Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K 0.5 values for Gly-Gln at-60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at-120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1-2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions: We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology

    Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): cloning, tissue expression and comparative aspects

    No full text
    A novel full-length cDNA that encodes for the Atlantic cod (Gadus morhua L.) PepT1-type oligopeptide transporter has been cloned. This cDNA (named codPepT1) was 2838·bp long, with an open reading frame of 2190·bp encoding a putative protein of 729 amino acids. Comparison of the predicted Atlantic cod PepT1 protein with zebrafish, bird and mammalian orthologs allowed detection of many structural features that are highly conserved among all the vertebrate proteins analysed, including (1) a larger than expected area of hydrophobic amino acids in close proximity to the N terminus; (2) a single highly conserved cAMP/cGMP-dependent protein kinase phosphorylation motif; (3) a large N-glycosylationrich region within the large extracellular loop; and (4) a conserved and previously undescribed stretch of 8–12 amino acid residues within the large extracellular loop. Expression analysis at the mRNA level indicated that Atlantic cod PepT1 is mainly expressed at intestinal level, but that it is also present in kidney and spleen. Analysis of its regional distribution along the intestinal tract of the fish revealed that PepT1 is ubiquitously expressed in all segments beyond the stomach, including the pyloric caeca, and through the whole midgut. Only in the last segment, which included the hindgut, was there a lower expression. Atlantic cod PepT1, the second teleost fish PepT1-type transporter documented to date, will contribute to the elucidation of the evolutionary and functional relationships among vertebrate peptide transporters. Moreover, it can represent a useful tool for the study of gut functional regionalization, as well as a marker for the analysis of temporal and spatial expression during ontogeny
    • …
    corecore