16 research outputs found

    Resting State and Diffusion Neuroimaging Predictors of Clinical Improvements Following Constraint-Induced Movement Therapy in Children With Hemiplegic Cerebral Palsy.

    Get PDF
    The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy. Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r = -0.81, P = .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with improvements in the Jebsen-Taylor score (r = -0.83, P = .02). Children with more compromised networks and tracts improved the most following constraint therapy

    Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic encephalopathy

    Get PDF
    Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Na v) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Na v channels. Functional characterization of mutant FHF2A co-expressed with wild-type Na v1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Na v channel function

    Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly

    Get PDF
    Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype–phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype–phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors

    De Novo and Rare Inherited Copy-Number Variations in the Hemiplegic Form of Cerebral Palsy

    Get PDF
    PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs

    Development of an inventory of goals using the International Classification of Functioning, Disability and Health in a population of non-ambulatory children and adolescents with cerebral palsy treated with botulinum toxin A

    No full text
    Abstract Background In the management of hypertonicity in children with cerebral palsy (CP), goals should be clearly identified in order to evaluate the effectiveness of botulinum toxin A (BoNT-A) treatment, specifically in non-ambulatory children and adolescents, Gross Motor Function Classification System (GMFCS), level IV or V. A retrospective chart review (Mesterman et al., 2013) identified the need for the development of a set of specific and meaningful goals linked to the International Classification of Functioning, Disability and Health (ICF) for future goal setting and evaluation in this population. Our objective is to create an inventory of goals based on the ICF framework that captures the needs and values of families with children with CP. Methods This cross-sectional observational study recruited parents of twenty children and youths with CP in GMFCS levels IV or V (mean age 11.2 years, SD 4.3, 13 males) who were assessed for BoNT-A treatment at the Spasticity Management Clinic at McMaster Children’s Hospital (Hamilton, ON). A previous inventory of goals was developed by a group of experts at a national botulinum toxin conference held in January 2014 (Montreal, Canada). The inventory of goals was further refined by asking the parents to select goals from the inventory list that they would like their child to accomplish after receiving BoNT-A treatment, and asking healthcare professionals for clarity and phrasing of goals in the inventory list. Results All parents identified body structure and function goals, with more than 75% of parents selecting reduction in muscle tone and increased range of movements in the upper and lower extremities. More than 50% of parents identified activity goals related to ease of caregiving. Two activity goals and three participation goals were missing from the inventory. Participation goals were identified by less than 5% of parents. Conclusion The inventory may be a helpful tool to facilitate a discussion about goal setting between healthcare professionals and families in the context of BoNT-A treatment. A future study is needed to conduct qualitative interviews to better understand the information that families may require about setting goals during BoNT-A treatment and to evaluate the usefulness of the inventory

    The Quality Function Measure: Reliability and discriminant validity of a new measure of quality of gross motor movement in ambulatory children with cerebral palsy

    No full text
    Aim: Optimizing movement quality is a common rehabilitation goal for children with cerebral palsy (CP)

    Neuroplastic Sensorimotor Resting State Network Reorganization in Children With Hemiplegic Cerebral Palsy Treated With Constraint-Induced Movement Therapy.

    No full text
    Using resting state functional magnetic resonance imaging (MRI), we aim to understand the neurologic basis of improved function in children with hemiplegic cerebral palsy treated with constraint-induced movement therapy. Eleven children including 4 untreated comparison subjects diagnosed with hemiplegic cerebral palsy were recruited from 3 clinical centers. MRI and clinical data were gathered at baseline and 1 month for both groups, and 6 months later for the case group only. After constraint therapy, the sensorimotor resting state network became more bilateral, with balanced contributions from each hemisphere, which was sustained 6 months later. Sensorimotor resting state network reorganization after therapy was correlated with a change in the Quality of Upper Extremity Skills Test score at 1 month (r = 0.79, P = .06), and Canadian Occupational Performance Measure scores at 6 months (r = 0.82, P = .05). This clinically correlated resting state network reorganization provides further evidence of the neuroplastic mechanisms underlying constraint-induced movement therapy

    Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula

    No full text
    ABSTRACT. Objective. Between October and November 2003, several infants with encephalopathy were hospitalized in pediatric intensive care units in Israel. Two died of cardiomyopathy. Analysis of the accumulated data showed that all had been fed the same brand of soy-based formula (Remedia Super Soya 1), specifically manufactured for the Israeli market. The source was identified on November 6, 2003, when a 5.5-month-old infant was admitted to Sourasky Medical Center with upbeat nystagmus, ophthalmoplegia, and vomiting. Wernicke's encephalopathy was suspected, and treatment with supplementary thiamine was started. His condition improved within hours. Detailed history revealed that the infant was being fed the same formula, raising suspicions that it was deficient in thiamine. The formula was tested by the Israeli public health authorities, and the thiamine level was found to be undetectable (<0.5 g/g). The product was pulled from the shelves, and the public was alerted. Thiamine deficiency in infants is very rare in developed countries. The aim of this study was to report the epidemiology of the outbreak and to describe the diagnosis, clinical course, and outcome of 9 affected infants in our care. Methods. After the index case, an additional 8 infants were identified in our centers by medical history, physical examination, and laboratory testing. The group consisted of 6 male and 3 female infants aged 2 to 12 months. All were assessed with the erythrocyte transketolase activity assay, wherein the extent of thiamine deficiency is expressed in percentage stimulation compared with baseline (thiamine pyrophosphate effect [TPPE]). Normal values range from 0% to 15%; a value of 15% to 25% indicates thiamine deficiency, and >25% indicates severe deficiency. Blood lactate levels (normal: 0.5-2 mmol/L) were measured in 6 infants, cerebrospinal fluid lactate in 2 (normal: 0.5-2 mmol/L), and blood pyruvate in 4 (normal: 0.03-0.08 mmol/L). The diagnostic criteria for thiamine deficiency were abnormal transketolase activity and/or unexplained lactic acidosis. Treatment consisted of intramuscular thiamine 50 mg/day for 14 days combined with a switch to another infant formula. Results. Early symptoms were nonspecific and included mainly vomiting (n ‫؍‬ 8), lethargy (n ‫؍‬ 7), irritability (n ‫؍‬ 5), abdominal distension (n ‫؍‬ 4), diarrhea (n ‫؍‬ 4), respiratory symptoms (n ‫؍‬ 4), developmental delay (n ‫؍‬ 3), and failure to thrive (n ‫؍‬ 2). Infection was found in all cases. Six infants were admitted with fever. One patient had clinical dysentery and group C Salmonella sepsis; the others had mild infection: acute gastroenteritis (n ‫؍‬ 2); upper respiratory infection (n ‫؍‬ 2); and bronchopneumonia, acute bronchitis, and viral infection (n ‫؍‬ 1 each). Two infants were treated with antibiotics. Three infants had neurologic symptoms of ophthalmoplegia with bilateral abduction deficit with or without upbeat nystagmus. All 3 had blood lactic acidosis, and 2 had high cerebrospinal fluid lactate levels. Patient 1, our index case, was hospitalized for upbeat nystagmus and ophthalmoplegia, in addition to daily vomiting episodes since 4 months of age and weight loss of 0.5 kg. Findings on brain computed tomography were normal. Blood lactate levels were high, and TPPE was 37.8%. Brain magnetic resonance imaging (MRI) revealed no abnormalities. Patient 2, who presented at 5 months with lethargy, vomiting, grunting, and abdominal tenderness, was found to have intussusception on abdominal ultrasound and underwent 2 attempts at reduction with air enema several hours apart. However, the lethargy failed to resolve and ophthalmoplegia appeared the next day, leading to suspicions of Wernicke's encephalopathy. Laboratory tests showed severe thiamine deficiency (TPPE 31.2%). In patients 1 and 2, treatment led to complete resolution of symptoms. The third infant, a 5-month-old girl, was admitted on October 10, 2003, well before the outbreak was recognized, with vomiting, fever, and ophthalmoplegia. Her condition deteriorated to seizures, apnea, and coma. Brain MRI showed a bilateral symmetrical hyperintense signal in the basal ganglia, mamillary bodies, and periaqueductal gray matter. Suspecting a metabolic disease, vitamins were added to the intravenous solution, including thiamine 250 mg twice a day. Clinical improvement was noted 1 day later. TPPE assay performed after treatment with thiamine was started was still abnormal (17.6%). Her formula was substituted after 4 weeks, after the announcement about the thiamine deficiency. Although the MRI findings improved 5 weeks later, the infant had sequelae of ophthalmoplegi
    corecore