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Original Article

Resting State and Diffusion Neuroimaging
Predictors of Clinical Improvements
Following Constraint-Induced Movement
Therapy in Children With Hemiplegic
Cerebral Palsy

Kathryn Y. Manning, MSc1, Darcy Fehlings, MD2, Ronit Mesterman, MD3,
Jan Willem Gorter, MD, PhD3, Lauren Switzer, MSc2,
Craig Campbell, MD4, and Ravi S. Menon, PhD1,5

Abstract
The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy.
Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral
palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week
constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting
state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r¼ –0.81,
P¼ .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements
in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with
improvements in the Jebsen-Taylor score (r ¼ –0.83, P ¼ .02). Children with more compromised networks and tracts improved
the most following constraint therapy.
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Cerebral palsy is a group of disorders affecting the develop-

ment of movement and posture caused by a non-progressive

injury to the developing brain prenatally or in early life.1 Hemi-

plegic cerebral palsy is a common subtype of cerebral palsy and

is characterized by unilateral involvement with impairments in

the arm and/or leg.2-4 Cortical and/or subcortical lesions caused

by a middle cerebral artery stroke, asymmetrical periventricu-

lar leukomalacia, or intraventricular hemorrhages are found

within motor areas in the hemisphere contralateral to the

affected limb.5 Individuals with hemiplegic cerebral palsy

affecting the upper extremity experience weak grasping ability,

difficulty performing intricate movements, hypertonia,

decreased selective motor control, and altered proprioception.1

Children may exhibit learned non-use wherein the hemiplegic

limb is further inhibited from normal functional development6

and executing bimanual activities.7,8

Constraint-induced movement therapy has the most convin-

cing clinical evidence for improving sensorimotor function in

children with hemiplegic cerebral palsy.9,10 Constraint therapy

directly attempts to combat learned non-use by physically

restraining the unaffected arm, thereby forcing the individual

to repetitively use the hemiplegic limb.11,12 Initially demon-

strated by Taub et al6 in primate studies, this therapy has been

effective in improving hand function in both stroke and cere-

bral palsy and has also been linked with evidence of
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neuroplasticity.13 However, not all children with hemiplegic

cerebral palsy experience success with this intensive and often-

times frustrating treatment.14

Recent studies have identified poorer baseline hand function

as predictors of a positive response to constraint therapy,8,15

although possible resting state functional magnetic resonance

imaging (MRI) predictors for this particular subject group

have not been explored. Previous functional MRI studies of

individuals with cerebral palsy treated with constraint therapy

have concentrated on task-related activation experiments.15,16

During hemiplegic hand movement, activation often occurs in

the contralesional (opposite side of the lesion) hemisphere,

though after therapy the affected hemisphere activity variably

increases.15,16 Task-based functional MRI has several chal-

lenges associated with it, including motion artifacts related

to the motor task, inconsistent performance, mirror move-

ments or the ability of the individual to perform the task at

all.17 Resting state functional MRI and diffusion tensor ima-

ging are acquired in the absence of a task and allow the

investigator to explore global network organization and white

matter integrity.17

Fractional anisotropy and mean diffusivity measures quan-

tify the degree of anisotropy (which is related to axon myelina-

tion, density, and integrity18) and magnitude of water diffusion,

respectively. Recovery of adults with stroke after constraint

therapy has been predicted using resting state interhemispheric

connectivity.19 Diffusion analysis of the corticospinal tract has

also revealed a relationship between the fractional anisotropy

of the tract and a positive clinical change in adults with hemi-

plegia secondary to an acquired stroke20; however, several

recent reports in children have not associated corticospinal tract

organization and integrity with the ability to benefit from

constraint-induced movement therapy.21,22

In this study, we investigate baseline neuroimaging charac-

teristics related to clinical improvements following constraint

therapy in children with congenital hemiplegic cerebral palsy

using resting state functional MRI and diffusion tensor ima-

ging. We compare the clinical changes with baseline MRI data

to determine potential neuroimaging predictors of improved

arm functionality after constraint therapy.

Methods

Participants

Fourteen individuals diagnosed with hemiplegic cerebral palsy (hemi-

plegia) (all Gross Motor Function Classification System and Manual

Ability Classification System Level I) as a result of cortical or subcor-

tical injury and between the ages of 6 and 18 years with the ability to

understand and participate in the treatment were originally recruited

for this study from Holland Bloorview Kids Rehabilitation Hospital

and McMaster Children’s Hospital. They had to be able to cooperate,

understand, and follow instructions for the MRI portion with the abil-

ity to remain still for about 45 minutes. The participants had no previ-

ous constraint therapy within 9 months of the study, and no botulinum

toxin upper limb injections within 6 months of the study. Three of

these individuals did not participate in the MRI portion of the study

for various reasons (braces artifact, afraid to enter the MRI, parents

were not interested in the MRI sessions), and 4 were not used due

to excessive motion. The demographic and clinical descriptions are

summarized in Table 1.

Study Design and Clinical Evaluation

A 3-week constraint therapy protocol was administered with the child

wearing a nonremovable below-elbow cast on the non-hemiplegic

limb for the first week (24 hours per day for 7 days) followed by a

2-week standardized constraint therapy camp, ‘‘Hand2Hand,’’

Table 1. Subject Demographic Details and Individual Magnetic Resonance Imaging (MRI) and Clinical Scores.

Participant No. 1 2 3 4 5 6 7

Sex M M F F M M M
Age 13 12 11 6 15 14 11
Affected Hemisphere L R L R R R R
Injury Pattern MCA MCA MCA IVHa PVLa PVL PVLb

Lesion Volume (mL) 57.94 5.91 8.94 81.27 79.54 10.37 1.94
Primary lesion location (C ¼ cortical, S ¼ subcortical) C and S S C and S C and S C and S S S
Laterality index based on the number of active voxels with a cluster threshold –0.99 –0.25 –0.49 –0.31 –1.00 –0.09 –0.31
Fraction anisotropy in the PLIC of the affected hemisphere 0.24 0.44 0.32 0.38 0.30 0.32 0.38
Mean diffusivity in the PLIC of the affected hemisphere (10–3) 1.3 0.81 0.84 0.88 0.97 0.89 0.79
Baseline QUEST 65.32 83.82 65.7 79.1 67.59 82.49 75.62
1-Month QUEST 78.72 88.45 78.51 81.49 71.05 88.29 90.74
Baseline COPM 3.3 3 1 1 2.5 7 5.67
1-Month COPM 9 6.3 5 5.7 8.5 6.5 8
Baseline JTTHF (s) 28 13.88 120 27 13.72 5.91 6.56
1-Month JTTHF (s) 10 7.38 120 20 9.59 7.1 5.31

Abbreviations: COPM, Canadian Occupational Performance Measure; IVH, intraventricular hemorrhage; JTTHF, Jebsen-Taylor Test of Hand Function (lifting large
but light objects task); MCA, middle cerebral artery infarct; PLIC, posterior limb of the internal capsule; PVL, periventricular leukomalacia; QUEST, Quality of
Upper Extremity Skills Test.
aWith porencephaly.
bWith periventricular germinal matrix injury.
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developed at Holland Bloorview Kids Rehabilitation Hospital where

the children wore a removable cast for the majority of camp-time in

the first week and for 1 hour a day in the second week of camp. The

children worked with an occupational therapist in the camp for 4 hours

a day for 5 days per week (totaling 40 hours of camp intervention) and

initially concentrated on unilateral activities with the hemiplegic hand,

and added bilateral activities during the second week. They were

encouraged to do 1 hour of ‘‘homework’’ each night replicating camp

activities learned that day.

The children in this study were clinically evaluated 1 to 4 days

before constraint therapy and at 1 month (þ/–1 week) after baseline

following the constraint-induced movement therapy. Individualized

performance outcomes (Canadian Occupational Performance Mea-

sure), functional capacity (Quality of Upper Extremity Skills Test),

and hemiplegic hand efficiency (Jebsen-Taylor task) were used to

evaluate subjects.23 The primary outcome, Canadian Occupational

Performance Measure, focuses on individualized goals based on the

participants’ ability to perform 3 self-identified daily tasks. The Qual-

ity of Upper Extremity Skills Test is a standard set of tests assessing

dissociated movements, grasp, extension, and weight bearing with the

hemiplegic limb.24 The total Quality of Upper Extremity Skills Test

score reflects the average of all sections. The Jebsen-Taylor task with

the hemiplegic hand moving large, but light, objects was identified a

priori by the occupational therapists as being the most sensitive mea-

sure of functionality changes in the Jebsen-Taylor battery and this

subtest is reported in the Results section. There was a 2-minute limit

set per Jebsen-Taylor task. Change scores were calculated by subtract-

ing baseline from the 1-month follow-up score. Clinically relevant

changes were also examined on a group and individual basis for Cana-

dian Occupational Performance Measure and Quality of Upper Extre-

mity Skills Test scores, defined as an increase in 2 and 3 points,

respectively.

MRI Analysis

The MRI protocol is detailed in Supplementary Information. A single

investigator blinded to any clinical information or results performed

all analyses. Resting state functional MRI data were only included if

mean relative displacement was less than 0.5525 and maximum displa-

cement was less than 3 mm. A sample resting state functional MRI

volume is shown in Figure 1C. The imaging data was preprocessed

using the Functional Magnetic Resonance Imaging of the Brain Soft-

ware Library (FSL) (http://www.fmrib.ox.ac.uk/fsl). Functional data

were preprocessed using the functional MRI Expert Analysis Tool

using the standard steps: brain extraction, motion correction with a

Linear Image Registration Tool, 5 mm spatial smoothing, and low-

and high-pass filtering (0.01-0.1 Hz) and transformation into standard

space. Denoising was performed using Multivariate Exploratory

Linear Optimized Decomposition into Independent Components,

with 20 components per single session results from which noisy

components were removed from the data.

The preprocessed functional data were then analyzed to identify

the sensorimotor network using 2 different techniques: independent

component analysis and a seed-based analysis. Temporally concate-

nated independent component analysis was used on the cleaned data

to identify the average sensorimotor resting state network per subject.

Dual regression algorithms were used to back-reconstruct a resting

state sensorimotor network for each session. Both this network and the

same network with a minimum cluster size threshold of 200 voxels

were analyzed.

Before carrying out a seed-based analysis, further motion correc-

tion was applied using the ‘‘fsl_motion_outliers’’ tool. Volumes with

large motion were detected and used to create a confound matrix that

could then be used within the general linear model to remove the

effect of these time points on the seed-based analysis, without compro-

mising statistics, temporal filtering, or correlation algorithms. A

region of interest was chosen from independent component-derived

network motor areas in the contralesional hemisphere. The time

course from this region was extracted and correlated with the rest of

the brain on a voxel-wise basis to once again visualize the sensorimo-

tor resting state network and its connectivity patterns before constraint

therapy.

Laterality indices were calculated from both the independent com-

ponent analysis and seed-based network results. The general laterality

index (LI) equation used is:

LI ¼ Affected hemisphere data� Contralesional data½ �
Affected hemisphere dataþ Contralesional data½ � ;

where the term data refers to the sensorimotor resting state net-

work organization based on (1) the number of active (above z-thresh-

old) voxels, (2) the average signal intensity, or (3) the average z-

statistic within motor areas defined using the Harvard-Oxford Cortical

Structural Atlas. A negative laterality index would indicate a bias

toward the contralesional hemisphere or a more unilateral network

because of the cortical and subcortical damage, whereas a laterality

index approaching 0 would indicate a bilateral network pattern as seen

in healthy subjects.26

Regions of interest were chosen from the right and left primary

sensorimotor areas found in the temporally concatenated independent

sensorimotor component and these time courses were correlated with

each other. The standard deviation of these time series was calculated

as an estimation of signal amplitude, and a laterality index based on

these standard deviations was considered as a possible predictor

variable.

All diffusion analysis was completed using the Diffusion Tool-

box. Diffusion-weighted data were first eddy current corrected.

The toolbox was then used to fit diffusion tensors to the eddy cur-

rent corrected data, as well as creating fractional anisotropy and

mean diffusivity maps. Average fractional anisotropy and mean

diffusivity values were taken from the entire lesion volume in the

affected hemisphere and at 3 points along the right and left corti-

cospinal tracts, which were found using the Johns Hopkins Univer-

sity White-Matter Tractography Atlas and confirmed with the

T2-weighted anatomical image. These 3 areas of interest include

the pons, midbrain, and the posterior limb of the internal capsule,

shown in Figure 1A.

Statistical Analysis

All analyses were performed using IBM’s Statistical Product and Ser-

vice Solutions (SPSS) (version 21) software. All variables were tested

for skew and kurtosis using a Shapiro-Wilk test of normality, and with

a P value > .05 parametric tests were used. Clinical outcome scores at

baseline and postconstraint therapy were compared using a paired

samples t test. The fractional anisotropy and mean diffusivity values

in both corticospinal tracts were also compared this way. A bivariate

correlation analysis using the Pearson correlation coefficient was

applied to all baseline MRI data and clinical change scores. MRI pre-

dictors were identified as significant with a P value less than .05 after

bootstrapping with 1000 samples.
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Results

Clinical Results

Individual clinical results are reported in Table 1 and group

results are given in Figure 2A, with error bars representing

the standard error of the mean. Almost all individuals

demonstrated clinically relevant improvements after con-

straint therapy according to an improvement of at least 3

points in the Quality of Upper Extremity Skills Test scores

(7/7), an improvement of at least 2 points in the Canadian

Occupational Performance Measure average performance

scores (6/7), and shortened time to complete the identified

Jebsen-Taylor task (5/7). Qualities of Upper Extremity

Skills Test scores on average improved by a clinically rele-

vant amount, from a mean (and standard deviation) of 74.23

(7.98) to 82.46 (7.06), and were statistically improved (P ¼
.007). Similarly, Canadian Occupational Performance Mea-

sures scores improved from 2.92 (2.02) to 6.67 (1.51) and

were statistically significant (P ¼ .004). Though most indi-

viduals did take less time to complete the Jebsen-Taylor

Figure 1. All images shown with radiologic convention. (A) Three diffusion regions of interest, from left to right: posterior limb of the internal
capsule, midbrain, and pons along the corticospinal tract, overlaid on a standard space image. (B) A representative subject’s independent
component analysis derived sensorimotor resting state network at baseline colored by z-statistic according to color scale shown (CG, pre and
post central gyrus, SMA, supplementary motor area). (C) From left to right column, the same representative subject’s anatomical (turbo spin-
echo, fluid suppression, and magnetization-prepared rapid acquisition gradient echo sequences), functional MRI volume, and diffusion fractional
anisotropy color map shown on the same 4 axial planes.
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lifting a large but light object task after constraint therapy,

there was a wide range of scores rendering only a trend

toward significant results (P ¼ .08), from 295 (237) seconds

to 263 (241) seconds.

Anatomical Images

The fluid suppression anatomical image (Figure 3) had an

ideal contrast for identifying the lesion manually. Primary

lesion location and approximate lesion volumes are reported

in Table 1 but were not correlated with any clinical changes.

The T2-weighted turbo spin-echo image was useful for regis-

tration and confirming the 3 regions of interest along the

right and left corticospinal tract (Figure 1A).

Sensorimotor Network Organization

Although the seed-based and independent component analysis

rendered similar results, in general independent component

analysis results were preferred because they were less affected

by motion and seed placement was not a factor.17 An example

of an independent component–derived sensorimotor network is

shown in Figure 1B.

All subjects except subject number 6 had sensorimotor rest-

ing state networks with a preference to the contralesional hemi-

sphere with little to no involvement from the affected

hemisphere. This organization was determined through lateral-

ity indices approaching –1, whereas subject 6 had a laterality

index of –0.09, indicating more equal contributions from both

hemispheres.

Resting State Functional MRI Predictors

Baseline laterality indices based on the number of voxels in

the sensorimotor resting state network above a z-threshold

of 5 were highly correlated with clinical improvements. All

predictor relationships are reported in Table 2 along with

the Pearson correlation coefficient and significance of the

relationship.

Specifically, a negative laterality index based on activated

voxels correlated with improvements in the Canadian Occu-

pational Performance Measure score and time to complete the

Jebsen-Taylor task. The same laterality index based on acti-

vated voxels with a cluster threshold applied rendered signif-

icant results when correlated with the positive change in

Canadian Occupational Performance Measure score, as

shown in Figure 2B. A negative laterality index based on sig-

nal intensity of the sensorimotor resting state network derived

from the seed-based analysis was significantly correlated with

an improvement in Quality of Upper Extremity Skills Test

scores. Lower connectivity between the contralesional and

affected hemisphere’s motor areas were related to improve-

ments in the Jebsen-Taylor task. Finally, a more negative

laterality index based on the standard deviations was also

related to positive change in the Quality of Upper Extremity

Skills Test score.

Diffusion of the Corticospinal Tract

The baseline fractional anisotropy in the affected tract’s

midbrain region of interest was 0.34 (0.057) and was signif-

icantly lower compared to the contralesional tract with

0.40 (0.067), (t ¼ 2.97, P ¼ .01), whereas the average

affected hemisphere’s mean diffusivity was 0.0013 mm2/s

(0.00034) and was significantly higher compared to the con-

tralesional tract, with 0.00084 mm2/s (0.00010) (t ¼ 2.21,

P ¼ .03). A representative fractional anisotropy color map

is shown in Figure 1C. Higher mean diffusivity in the

affected posterior limb of the internal capsule of the corti-

cospinal tract was significantly correlated with an improve-

ment in the time to complete the Jebsen-Taylor task (r ¼ –0.83,

P ¼ .02).

Figure 2. (A) Average Canadian Occupational Performance Measure
(COPM), Quality of Upper Extremity Skills Test (QUEST) rated out of
100 (ie, %), and time to complete Jebsen-Taylor (JTTHF) lifting a large
but light object task scores before and after constraint therapy, with
error bars depicting the standard error of the mean. (B) The rela-
tionship between the change in COPM and JTTHF scores before and
after constraint therapy as a function of a baseline resting state
laterality index (LI) based on the number of above-threshold voxels,
with a line of best fit shown and error bars representing the standard
deviation.
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Discussion

This study aimed to identify MRI resting state and diffusion

imaging predictors of improved functionality following con-

straint therapy in individuals with congenital hemiplegic cere-

bral palsy. Average and individual clinical scores taken before

and after constraint therapy indicate that participants improved

various aspects of hand function following the therapy, as

shown in many previous studies of constraint therapy.10 These

standard clinical measures complement each other well,

together providing customized subject-specific data based on

personal goals and reliable quantitative measures sensitive to

hemiplegic hand functional capability and efficiency changes

after therapy.

Typical sensorimotor resting state networks are fairly sym-

metrical and bilateral.26 In individuals with hemiplegic cere-

bral palsy because of the cortical and/or subcortical damage

in motor related areas and possible learned non-use, we found

that networks were asymmetric, except for 1 subject. The sen-

sorimotor resting state network derived through independent

component analysis was found to have altered connectivity pat-

terns at baseline, with asymmetric correlated activity within

motor areas in the unaffected hemisphere, as well as the supple-

mentary motor area. This asymmetric unilateral sensorimotor

network organization was observed in most subjects, regardless

of lesion volume, suggesting that injury location rather than

size is more relevant to motor impairment.21

Our novel finding is that subjects with a resting state net-

work deemed more asymmetric according to laterality indices

based on these altered connectivity patterns tended to improve

the most according to both the change in Canadian Occupa-

tional Performance Measure score and the time to complete the

Jebsen-Taylor task, whereas subjects with more symmetric and

bilateral baseline sensorimotor network organization showed

the least improvement. The mechanism of constraint therapy

may be optimally linked with the opportunity to restore bilat-

eral connectivity. Although the nature of resting state func-

tional MRI makes it difficult to uncover the underlying

neurophysiology,27 there are a few hypotheses we can develop

from the data. Initial lower correlations in the resting state

functional MRI time series between contralesional and affected

motor areas were linked with better outcomes after therapy.

Stunted connectivity could be due to the absence of structural

connections or abnormal communication between the 2 areas.

The laterality index based on signal amplitudes also indicates

a preference to the contralesional hemisphere, with lower, pos-

sibly inhibited signal fluctuations being related to better out-

comes. These unilateral baseline networks could have

existing physical connections to the affected hemisphere; how-

ever, they are being strongly inhibited by the contralesional

side. Stroke patients often have increased interhemispheric

inhibition from the contralesional to the affected hemisphere,

which is related to the degree of motor impairment,28 and

Figure 3. Anatomical fluid attenuated inversion recovery sequence images for each of the 7 participants. All images are shown with radiologic
convention and these single slices display the maximum lesion volume. Individual injury patterns are detailed in Table 1.
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constraint therapy may improve motor function by releasing

this inhibition.29 Our predictors indicate that subjects who can

take advantage of this mechanism may benefit the most. The

change in Quality of Upper Extremity Skills Test scores did not

significantly correlate with this particular resting state predic-

tor. This may be secondary to a ceiling effect, as many sub-

jects had high Quality of Upper Extremity Skills Test

baseline scores with little room to improve. However, a

seed-based laterality index of signal intensity was related to

larger changes in the Quality of Upper Extremity Skills Test

score, supporting our other predictors.

The diffusion results show that the affected corticospinal

tract consistently had decreased fractional anisotropy and

increased mean diffusivity values along all 3 regions of interest

compared to the contralesional corticospinal tract, which

agrees with previously published studies.20,30,31 Less favorable

MRI baseline data with increased mean diffusivity in the

affected corticospinal tract (indicating more damage) was pre-

dictive of improved individualized performance and efficiency

with the hemiplegic arm following constraint therapy. The rest-

ing state and diffusion predictors both indicate that subjects

with more compromised networks and tracts improve the most

after constraint therapy.

The results of this case series have to be interpreted while

considering the studies limitations. Sample size was small and

consisted of a high-performing group of recruited participants

(according to baseline Quality of Upper Extremity Skills Test

scores). With a small group size, outliers in the data could have

an influence on the outcomes. These predictors may only be

applicable to a certain range of baseline clinical scores. Further

studies of subject groups with a larger range of baseline clinical

scores will be needed to identify a relationship that includes

clinical and MRI baseline predictors of a positive response to

constraint therapy. Resting state functional MRI and diffusion

tensor imaging are global acquisitions that could be incorpo-

rated into current scanning regimes for this subject group and

require nothing but stillness from the participant, which is

vastly easier to implement compared to task-based functional

MRI studies, particularly in children. As further research eluci-

dates the strength of resting state functional MRI and diffusion

tensor imaging’s predictive value in studies of larger samples,

they may become useful clinical tools when determining if con-

straint therapy is an appropriate treatment option for individu-

als with hemiplegic cerebral palsy.
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Table 2. Predictor Relationships Between Baseline Magnetic
Resonance Imaging (MRI) Data and Clinical Change Scores.a

Baseline MRI predictor
Clinical
Change

Correlation
coefficient

(r)
Significance

(P)

LI based on the number of
active voxels

COPM –0.75 .05a

JTTHF 0.72 .07
QUEST –0.38 .4

LI based on the number of
active voxels with a cluster
threshold

COPM –0.81 .03a

JTTHF 0.60 .2
QUEST –0.15 .7

LI based on signal intensities
(seed-based analysis)

COPM –0.27 .6
JTTHF –0.14 .7

QUEST –0.79 .03a

Mean diffusivity in the affected
PLIC

COPM 0.46 .3
JTTHF –0.83 .02a

QUEST 0.21 .7

Correlation between the
contralesional and affected
hemispheres

COPM –0.09 .9
JTTHF 0.79 .03a

QUEST –0.28 .6

LI based on the standard
deviations

COPM –0.58 .2
JTTHF 0.20 .7

QUEST –0.73 .06

Abbreviations: COPM, Canadian Occupational Performance Measure; JTTHF,
Jebsen-Taylor Tests of Hand Function lifting a large but light object task; LI,
laterality index; PLIC, posterior limb of the internal capsule; QUEST, Quality of
Upper Extremity Skills Test.
aSignificant relationships.
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