437 research outputs found

    Three-dimensional super-resolution correlation-differential confocal microscopy with nanometer axial focusing accuracy

    Get PDF
    We present a correlation-differential confocal microscopy (CDCM), a novel method that can simultaneously improve the three-dimensional spatial resolution and axial focusing accuracy of confocal microscopy (CM). CDCM divides the CM imaging light path into two paths, where the detectors are before and after the focus with an equal axial offset in opposite directions. Then, the light intensity signals received from the two paths are processed by the correlation product and differential subtraction to improve the CM spatial resolution and axial focusing accuracy, respectively. Theoretical analyses and preliminary experiments indicate that, for the excitation wavelength of λ = 405 nm, numerical aperture of NA = 0.95, and the normalized axial offset of uM = 5.21, the CDCM resolution is improved by more than 20% and more than 30% in the lateral and axial directions, respectively, compared with that of the CM. Also, the axial focusing resolution important for the imaging of sample surface profiles is improved to 1 nm

    A Neural Signature Encoding Decisions under Perceptual Ambiguity

    Get PDF
    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making

    A Neural Signature Encoding Decisions under Perceptual Ambiguity

    Get PDF
    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making

    Cognitive and neural bases of visual-context-guided decision-making

    Get PDF
    Humans adjust their behavioral strategies based on feedback, a process that may depend on intrinsic preferences and contextual factors such as visual salience. In this study, we hypothesized that decision-making based on visual salience is influenced by habitual and goal-directed processes, which can be evidenced by changes in attention and subjective valuation systems. To test this hypothesis, we conducted a series of studies to investigate the behavioral and neural mechanisms underlying visual salience-driven decision-making. We first established the baseline behavioral strategy without salience in Experiment 1 (n = 21). We then highlighted the utility or performance dimension of the chosen outcome using colors in Experiment 2 (n = 30). We demonstrated that the difference in staying frequency increased along the salient dimension, confirming a salience effect. Furthermore, the salience effect was abolished when directional information was removed in Experiment 3 (n = 28), suggesting that the salience effect is feedback-specific. To generalize our findings, we replicated the feedback-specific salience effects using eye-tracking and text emphasis. The fixation differences between the chosen and unchosen values were enhanced along the feedback-specific salient dimension in Experiment 4 (n = 48) but unchanged after removing feedback-specific information in Experiment 5 (n = 32). Moreover, the staying frequency was correlated with fixation properties, confirming that salience guides attention deployment. Lastly, our neuroimaging study (Experiment 6, n = 25) showed that the striatum subregions encoded salience-based outcome evaluation, while the vmPFC encoded salience-based behavioral adjustments. The connectivity of the vmPFC-ventral striatum accounted for individual differences in utility-driven, whereas the vmPFC-dmPFC for performance-driven behavioral adjustments. Together, our results provide a neurocognitive account of how task-irrelevant visual salience drives decision-making by involving attention and the frontal-striatal valuation systems. PUBLIC SIGNIFICANCE STATEMENT: Humans may use the current outcome to make behavior adjustments. How this occurs may depend on stable individual preferences and contextual factors, such as visual salience. Under the hypothesis that visual salience determines attention and subsequently modulates subjective valuation, we investigated the underlying behavioral and neural bases of visual-context-guided outcome evaluation and behavioral adjustments. Our findings suggest that the reward system is orchestrated by visual context and highlight the critical role of attention and the frontal-striatal neural circuit in visual-context-guided decision-making that may involve habitual and goal-directed processes

    A uniform human multimodal dataset for emotion perception and judgment

    Get PDF
    Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations

    Occurrence and molecular characterization of Cryptosporidium in dogs in Henan Province, China

    Get PDF
    BACKGROUND: Cryptosporidiosis in dogs has been reported worldwide, involving both asymptomatic and diarrheic dogs. Large-scale surveys of Cryptosporidium infection in dogs have been performed in some countries using differents diagnostic methods. But, few data are available on the infection rate and molecular characteristics of Cryptosporidium spp. in dogs in China. RESULT: In this study, 770 fecal samples from 66 locations in Henan Province were examined. The average Cryptosporidium infection rate was 3.8%, with dogs in kennels having the highest rate of 7.0% (χ(2) = 14.82, P < 0.01). The infection rate was 8.0% in dogs younger than 90 days, which was significantly higher than that in the other age groups (1.1–3.8%;χ(2) = 18.82, P < 0.01). No association was noted between the infection rate and the sex of the dogs. Twenty-nine Cryptosporidium-positive samples were amplified at the small subunit rRNA (SSU rRNA), 70-kDa heat shock protein (HSP70), and actin loci using PCR. Sequence analysis of these amplicons identified only Cryptosporidium canis, which showed 100% identity with the published sequences of the SSU rRNA, HSP70, and actin genes. CONCLUSIONS: Our results confirm that C. canis is popular in the dog population in China, considering the large number of dogs in China and the close contact between dogs and humans, the role of C. canis in the transmission of human cryptosporidiosis warrants attention

    Rapid detection of multi-QR codes based on multistage stepwise discrimination and a compressed mobilenet.

    Get PDF
    Poor real-time performance in multi-QR codes detection has been a bottleneck in QR code decoding based Internet-of-Things (IoT) systems. To tackle this issue, we propose in this paper a rapid detection approach, which consists of Multistage Stepwise Discrimination (MSD) and a Compressed MobileNet. Inspired by the object category determination analysis, the preprocessed QR codes are extracted accurately on a small scale using the MSD. Guided by the small scale of the image and the end-to-end detection model, we obtain a lightweight Compressed MobileNet in a deep weight compression manner to realize rapid inference of multi-QR codes. The Average Detection Precision (ADP), Multiple Box Rate (MBR) and running time are used for quantitative evaluation of the efficacy and efficiency. Compared with a few state-of-the-art methods, our approach has higher detection performance in rapid and accurate extraction of all the QR codes. The approach is conducive to embedded implementation in edge devices along with a bit of overhead computation to further benefit a wide range of real-time IoT applications

    Twelve Novel Atm Mutations Identified in Chinese Ataxia Telangiectasia Patients

    Get PDF
    Ataxia telangiectasia (A-T) is an autosomal recessive disease characterized mainly by progressive cerebellar ataxia, oculocutaneous telangiectasia, and immunodeficiency. This disease is caused by mutations of the ataxia telangiectasia mutated (Atm) gene. More than 500 Atm mutations that are responsible for A-T have been identified so far. However, there have been very few A-T cases reported in China, and only two Chinese A-T patients have undergone Atm gene analysis. In order to systemically investigate A-T in China and map their Atm mutation spectrum, we recruited eight Chinese A-T patients from six unrelated families nationwide. Using direct sequencing of genomic DNA and the multiplex ligation-dependent probe amplification, we identified twelve pathogenic Atm mutations, including one missense, four nonsense, five frameshift, one splicing, and one large genomic deletion. All the Atm mutations we identified were novel, and no homozygous mutation and founder-effect mutation were found. These results suggest that Atm mutations in Chinese populations are diverse and distinct largely from those in other ethnic areas
    corecore