5 research outputs found

    Regulation Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis

    No full text
    Paclitaxel is an important anticancer drug. The phytohormone jasmonic acid can significantly induce the biosynthesis of paclitaxel in Taxus, but the molecular mechanism has not yet been resolved. To establish the jasmonic acid signalling pathway of Taxus media, based on the gene of the jasmonic acid signalling pathway of Arabidopsis thaliana, sequence analysis was performed to isolate the jasmonic acid signal from the transcriptome, a transcriptional cluster of pathway gene homologs and the full length of 22 genes were obtained by RACE PCR at 5′ and 3′: two EI ubiquitin ligase genes, COI1-1 and COI1-2;7 MYC bHLH type transcription factor (MYC2, MYC3, MYC4, JAM1, JAM2, EGL3, TT8); 12 JAZ genes containing the ZIM domain; and MED25, one of the components of the transcriptional complex. The protein interaction between each were confirmed by yeast two hybridization and bimolecular fluorescence complementation based on similar genes interaction in Arabidopsis. A similar jasmonate signaling pathway was illustrated in T. media. All known paclitaxel biosynthesis genes promoters were isolated by genome walker PCR. To investigate the jasmonate signaling effect on these genes’ expression, the transcription activity of MYC2, MYC3 and MYC4 on these promoters were examined. There are 12, 10 and 11 paclitaxel biosynthesis genes promoters that could be activated by MYC2, MYC3 and MYC4

    Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a systematic review and meta-analysis

    No full text
    Abstract Objective To analyze the prognostic value of programmed death factor ligand 1 (PD-L1) in colorectal cancer. Methods Electronic databases, such as PubMed, Web of Science, Embase, and Cochrane library, were searched to identify studies evaluating the PD-L1 expression and overall survival (OS) in these patients. Afterwards, the relevant data were extracted to perform the meta-analysis. Results A total of 3481 patients were included in 10 studies. The combined hazard ratio (HR) was 1.22 (95%CI = 1.01–1.48, P = 0.04), indicating that high expression of PD-L1 was significantly correlated with poor prognosis of colorectal cancer. Apropos of clinicopathological features, the merged odds ratio (OR) exhibited that highly expressed PD-L1 was firmly related to lymphatic invasion (OR = 3.49, 95%CI = 1.54–7.90, P = 0.003) and advanced stage (OR = 1.77, 95%CI = 1.41–2.23, P < 0.00001), but not correlative with patients’ gender, microsatellite instability, or tumor location. Conclusion The expression of PD-L1 can be utilized as an independent factor in judging the prognosis of colorectal cancer, and patients with advanced cancer or lymphatic invasion are more likely to express PD-L1. This conclusion may lay a theoretical foundation for the application of PD-1/PD-L1 immunoassay point inhibitors but still needs verifying by sizeable well-designed cohort studies

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore