132 research outputs found

    Heartwood of Dalbergia cochinchinensis: 4,7,2'-Trihydroxy-4'-methoxyisoflavanol and 6,4'-Dihydroxy-7-methoxyflavane Reduce Cytokine and Chemokine Expression In Vitro.

    Get PDF
    Dalbergia cochinchinensis has been widely used in traditional medicine because of its flavonoids; however, the impact of the flavonoids to modulate the inflammatory response to oral cells remains to be described. For this aim, we isolated 4,7,2'-trihydroxy-4'-methoxyisoflavanol (472T4MIF) and 6,4'-dihydroxy-7-methoxyflavane (64D7MF) from the heartwood of D. cochinchinensis and confirmed the chemical structure by nuclear magnetic resonance. We show here that both flavonoids are inhibitors of an inflammatory response of murine RAW 264.7 inflammatory macrophages stimulated by LPS. This is indicated by interleukin (IL)1, IL6, and chemokine CCL2 production besides the phosphorylation of p65. Consistently, in primary murine macrophages, both flavonoids decreased the inflammatory response by lowering LPS-induced IL1 and IL6 expression. To introduce oral cells, we have used human gingival fibroblasts and provoked the inflammatory response by exposing them to IL1β and TNFα. Under these conditions, 472T4MIF, but not 64D7MF, reduced the expression of chemokines CXCL1 and CXCL2. Taken together, we identified two flavonoids that can reduce the expression of cytokines and chemokines in macrophages and fibroblastic cells

    Comparative transcriptomic analyses of two sugarcane Saccharum L. cultivars differing in drought tolerance

    Get PDF
    Sugarcane (Saccharum spp.) is an important cash crop, and drought is an important factors limiting its yield. To study the drought resistance mechanism of sugarcane, the transcriptomes of two sugarcane varieties with different levels of drought resistance were compared under different water shortage levels. The results showed that the transcriptomes of the two varieties were significantly different. The differentially expressed genes were enriched in starch and sucrose metabolism, linoleic acid metabolism, glycolysis/gluconeogenesis, and glyoxylate and dicarboxylate metabolic pathways. Unique trend genes of the variety with strong drought resistance (F172) were significantly enriched in photosynthesis, mitogen-activated protein kinases signaling pathway, biosynthesis of various plant secondary metabolites, and cyanoamino acid metabolism pathways. Weighted correlation network analysis indicated that the blue4 and plum1 modules correlated with drought conditions, whereas the tan and salmon4 modules correlated with variety. The unique trend genes expressed in F172 and mapped to the blue4 module were enriched in photosynthesis, purine metabolism, starch and sucrose metabolism, beta-alanine metabolism, photosynthesis-antenna proteins, and plant hormone signal transduction pathways. The expression of genes involved in the photosynthesis-antenna protein and photosynthesis pathways decreased in response to water deficit, indicating that reducing photosynthesis might be a means for sugarcane to respond to drought stress. The results of this study provide insights into drought resistance mechanisms in plants, and the related genes and metabolic pathways identified may be helpful for sugarcane breeding in the future

    A Low Complexity Persistent Reconnaissance Algorithm for FANET

    No full text
    In recent years, with the rapid progress of unmanned aerial vehicle (UAV) technology, UAV-based systems have been widely used in both civilian and military applications. Researchers have proposed various network architectures and routing protocols to address the network connectivity problems associated with the high mobility of UAVs, and have achieved considerable results in a flying ad hoc network (FANET). Although scholars have noted various threats to UAVs in practical applications, such as local magnetic field variation, acoustic interference, and radio signal hijacking, few studies have taken into account the dynamic nature of these threat factors. Moreover, the UAVs’ high mobility combined with dynamic threats makes it more challenging to ensure connectivity while adapting to ever-changing scenarios. In this context, this paper introduces the concept of threat probability density function (threat PDF) and proposes a particle swarm optimization (PSO)-based threat avoidance and reconnaissance FANET construction algorithm (TARFC), which enables UAVs to dynamically adapt to avoid high-risk areas while maintaining FANET connectivity. Inspired by the graph editing distance, the total edit distance (TED) is defined to describe the alterations of the FANET and threat factors over time. Based on TED, a dynamic threat avoidance and continuous reconnaissance FANET operation algorithm (TA&CRFO) is proposed to realize semi-distributed control of the network. Simulation results show that both TARFC and TA&CRFO are effective in maintaining network connectivity and avoiding threats in dynamic scenarios. The average threat value of UAVs using TARFC and TA&CRFO is reduced by 3.99~27.51% and 3.07~26.63%, respectively, compared with the PSO algorithm. In addition, with limited distributed moderation, the complexity of the TA&CRFO algorithm is only 20.08% of that of TARFC

    Relationship between Expression of Cellular Receptor-27.8 kDa and Lymphocystis Disease Virus (LCDV) Infection.

    No full text
    The 27.8 kDa membrane protein from flounder (Paralichthys olivaceus) gill (FG) cells was previously identified as a putative cellular receptor involved in lymphocystis disease virus (LCDV) infection. In this paper, the expression of receptor-27.8 kDa (27.8R) and LCDV loads in FG cells and hirame natural embryo (HINAE) cells were investigated upon LCDV infection and anti-27.8R monoclonal antibody (MAb) treatment. The results showed the 27.8R was expressed and co-localized with LCDV in both FG and HINAE cell surface. After LCDV infection, the expression of 27.8R exhibited a dose-dependent up-regulation with the increasing of LCDV titers, and demonstrated a tendency to increase firstly and then decrease during a time course up to 9 days; LCDV copies showed a similar variation trend to the 27.8R expression, however, it reached the highest level later than did the 27.8R expression. Additionally, the 27.8R expression and LCDV copies in FG cells were higher than those in HINAE cells. In the presence of increasing concentration of the anti-27.8R MAbs, the up-regulation of 27.8R expression and the copy numbers of LCDV significantly declined post LCDV infection, and the cytopathic effect induced by LCDV in the two cell lines was accordingly reduced, indicating anti-27.8R MAbs pre-incubation could inhibit the up-regulation of 27.8R expression and LCDV infection. These results suggested that LCDV infection could induce up-regulation of 27.8R expression, which in turn increased susceptibility and availability of FG and HINAE cells for LCDV entry, providing important new insights into the LCDV replication cycle and the interaction between this virus and the host cells

    Study on Soil and Water Conservation and Governance of Urban Inland Rivers: A Case Study of Nakau River Basin Governance

    No full text
    Taking the Nakau River Basin Governance Project as the research area, the problems existing in the Nakau River Basin, the key and difficult points of water and soil conservation management, and the measures and implementation effects of water and soil conservation in urban rivers are discussed. According to the characteristics of soil and water loss in the inland rivers of the city, an effective prevention and control measure system was proposed, which ultimately effectively prevented human-induced soil and water loss during the construction of the project, protected water and soil resources, guaranteed the safe operation of the main project, and maintained and improved the regional ecology surroundings

    Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus)

    No full text
    The 27.8 kDa membrane protein expressed in flounder (Paralichthys olivaceus) gill cells was proved to be a receptor mediating lymphocystis disease virus (LCDV) infection. In this study, SDS-PAGE and Western blotting demonstrated that 27.8 kDa receptor (27.8R) was shared by flounder and turbot (Scophthalmus maximus). Indirect immunofluorescence assay (IIFA) and immunohistochemistry showed that 27.8R was widely expressed in tested tissues of healthy turbot. The indirect enzyme-linked immunosorbent assay indicated that 27.8R expression was relatively higher in stomach, gill, heart, and intestine, followed by skin, head kidney, spleen, blood cells, kidney and liver, and lower in ovary and brain in healthy turbot, and it was significantly up-regulated after LCDV infection. Meanwhile, real-time quantitative PCR demonstrated that LCDV was detected in heart, peripheral blood cells, and head kidney at 3 h post infection (p.i.), and then in other tested tissues at 12 h p.i. LCDV copies increased in a time-dependent manner, and were generally higher in the tissues with higher 27.8R expression. Additionally, IIFA showed that 27.8R and LCDV were detected at 3 h p.i. in some leukocytes. These results suggested that 27.8R also served as a receptor in turbot, and LCDV can infect some leukocytes which might result in LCDV spreading to different tissues in turbot

    Deep Learning for Irregularly and Regularly Missing 3-D Data Reconstruction

    No full text
    corecore