61 research outputs found

    Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells.

    Get PDF
    peer-reviewedThe phospholipids (PLs) of large yellow croaker (Pseudosciaena crocea, P. crocea) roe contain a high level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), which can lower blood lipid levels. In previous research, PLs of P. crocea roe were found able to regulate the accumulation of triglycerides. However, none of these involve the function of DHA-containing phosphatidylcholine (DHA-PC), which is the main component of PLs derived from P. crocea roe. The function by which DHA-PC from P. crocea roe exerts its effects has not yet been clarified. Herein, we used purified DHA-PC and oleic acid (OA) induced HepG2 cells to establish a high-fat model, and the cell activity and intracellular lipid levels were then measured. The mRNA and protein expression of Fatty Acid Synthase (FAS), Carnitine Palmitoyl Transferase 1A (CPT1A) and Peroxisome Proliferator-Activated Receptor α (PPARα) in HepG2 cells were detected via RT-qPCR and western blot as well. It was found that DHA-PC can significantly regulate triglyceride accumulation in HepG2 cells, the effect of which was related to the activation of PPARα receptor activity, upregulation of CPT1A, and downregulation of FAS expression. These results can improve the understanding of the biofunction of hyperlipidemia mediated by DHA-PC from P. crocea roe, as well as provide a theoretical basis for the utilization of DHA-PC from P. crocea roe as a functional food additive

    GPT-NER: Named Entity Recognition via Large Language Models

    Full text link
    Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited

    Hidden blood loss and its influential factors after total hip arthroplasty

    Get PDF

    Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity

    Get PDF
    该研究成果揭示了吞噬性细胞内Hippo信号通路关键激酶Mst1和Mst2通过活化Rac家族蛋白来调节线粒体向吞噬小泡募集并释放ROS来清除病原体,这个生物学过程在天然免疫和宿主防御中发挥着重要作用。该成果解析了人的Mst1基因缺失或Rac2基因突变引发免疫缺陷综合症的致病机理,为研究人类感染性疾病提供了全新的视角。 该论文的主要工作由2012级博士生耿晶、2013级博士生孙秀峰以及王平、张世浩和王晓珍等学生共同承担,并与厦门市第一医院、台湾长庚大学、中国科学技术大学等单位合作完成,通讯作者为周大旺教授和陈兰芬教授。该研究工作获得了“青年千人计划”、国家自然科学基金委和科技部的资助。Mitochondria need to be juxtaposed to phagosomes for the synergistic production of ample reactive oxygen species (ROS) in phagocytes to kill pathogens. However, how phagosomes transmit signals to recruit mitochondria has remained unclear. Here we found that the kinases Mst1 and Mst2 functioned to control ROS production by regulating mitochondrial trafficking and mitochondrion-phagosome juxtaposition. Mst1 and Mst2 activated the GTPase Rac to promote Toll-like receptor (TLR)-triggered assembly of the TRAF6-ECSIT complex that is required for the recruitment of mitochondria to phagosomes. Inactive forms of Rac, including the human Rac2D57N mutant, disrupted the TRAF6-ECSIT complex by sequestering TRAF6 and substantially diminished ROS production and enhanced susceptibility to bacterial infection. Our findings demonstrate that the TLR-Mst1-Mst2-Rac signaling axis is critical for effective phagosome-mitochondrion function and bactericidal activity.Supported by the National Basic Research Program (973) of China (2015CB910502 to L.C.), China's 1000 Young Talents Program (D.Z. and L.C.), the 111 Projects (B12001 and B06016), the Fundamental Research Funds for the Central Universities of China-Xiamen University (CXB2014004 to J.Z.; 20720140551 to L.C.; and 2013121034 and 20720140537 to D.Z.), the National Natural Science Foundation of China (31270918, 81222030 and J1310027 to D.Z.; 81372617, 81422018 and U1405225 to L.C.; 81472229 to L.H.; and 81302529 to X.L.), the Natural Science Foundation of Fujian (2013J06011 to D.Z. and 2014D007 to X.L.), the US National Institutes of Health (RO1 CA136567 for J.A.) and institutional funds from Massachusetts General Hospital (for J.A.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.</p> <p>Methods</p> <p>A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.</p> <p>Results</p> <p>Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% <it>vs </it>7.9%).</p> <p>Conclusions</p> <p>The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.</p

    Direct Observation of Conductive Polymer Induced Inversion Layer in n-Si and Correlation to Solar Cell Performance

    Get PDF
    Heterojunctions formed by ultrathin conductive polymer [poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate)—PEDOT:PSS] films and n‐type crystalline silicon are investigated by photoelectron spectroscopy. Large shifts of Si 2p core levels upon PEDOT:PSS deposition provide evidence that a dopant‐free p–n junction, i.e., an inversion layer, is formed within Si. Among the investigated PEDOT:PSS formulations, the largest induced band bending within Si (0.71 eV) is found for PH1000 (high PEDOT content) combined with a wetting agent and the solvent additive dimethyl sulfoxide (DMSO). Without DMSO, the induced band bending is reduced, as is also the case with a PEDOT:PSS formulation with higher PSS content. The interfacial energy level alignment correlates well with the characteristics of PEDOT:PSS/n‐Si solar cells, where high polymer conductivity and sufficient Si‐passivation are also required to achieve high power conversion efficiency.Peer Reviewe

    NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice

    No full text
    Toll-like receptors (TLRs) and NK receptors are the two most important receptor families in innate immunity. Although it has been observed that TLR signaling can induce or up-regulate the expression of the ligands for stimulatory NK receptors on monocytes or muscle cells, there is not yet a report indicating whether TLR signaling can break down self-tolerance through NK receptors. The present work reports that TLR3 signaling by polyinosinic–polycytidylic acid stimulation induces intestinal epithelial cells (IECs) to express retinoic acid early inducible-1 (a ligand for NKG2D) and to induce NKG2D expression on CD8αα intestinal intraepithelial lymphocytes by IL-15 derived from TLR3-activated IECs. The blockade of interaction between NKG2D and Rae1 inhibits the cytotoxicity of intraepithelial lymphocytes against IECs in a cell–cell contact-dependent manner and therefore alleviates polyinosinic–polycytidylic acid-induced epithelial destruction and acute mucosal injury of small intestine. These results demonstrate that TLR signaling induces tissue injury through the NKG2D pathway, suggesting that TLR signaling may break down self-tolerance through induction of abnormal expression of ligands for stimulatory NK receptors
    corecore