59 research outputs found

    Loess particles loaded petaloid Bi2S3 nanowires for highly efficient photodegradation of dyesunder sunlight

    Get PDF
    1442-1448In this paper, using loess particles (LoP), a kind of extremely common and inexpensive natural silicate particles with metastable structure, as inorganic carrier, the petaloid Bi2S3nanowires have been loaded by in-situ depositing, which afforded loess particles loaded petaloid Bi2S3nanowires (PBiNw@LoP) with one-step hydrothermal procedure. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and adsorption-desorption isotherms of N2 have been employed to characterize the prepared composite photocatalyst. The results show that the petaloid Bi2S3nanowires are evenly dispersed on the loose surface of loess particles. The photocatalytic activity of PBiNw@LoP is evaluated by photodegradation of methylene blue (MB) irradiated with sunlight. It is demonstrated that PBiNw@LoP exhibits the superior photocatalytic performance with the photocatalytic degradation rate of 99.5%. The petaloid Bi2S3 nanowires with larger specific surface helps to absorb light, while the loose surface of loess with certain adsorption capacity. Therefore, the photocatalytic activity has been improved by the synergistic effect in photodegradation of dyes, while the ratio of Bi2S3 in catalyst is decreased without affecting the photodegradation performance. In conclusion, a cheap and efficient photocatalyst has been successfully prepared for the degradation of dye wastewater

    Presence of VIM-positive pseudomonas species in chickens and their surrounding environment

    Get PDF
    Metallo-β-lactamase gene blaVIM was identified on the chromosome of four Pseudomonas sp. isolates from a chicken farm, including one Pseudomonas aeruginosa isolate from a swallow (Yanornis martini), one Pseudomonas putida isolate from a fly, and two P. putida isolates from chickens. The four isolates shared two variants of blaVIM-carrying genomic contexts that resemble the corresponding regions of clinical metallo-β-lactamase-producing Pseudomonas spp. Our study suggests that the surveillance of carbapenemase-producing bacteria in livestock and their surrounding environment is urgently needed

    Plasmid-mediated novel blaNDM-17 gene encoding a Carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) have spread worldwide, leaving very few treatment options available. New Delhi metallo-beta-lactamase (NDM) is the main carbapenemase mediating CRE resistance and is of increasing concern. NDM-positive Enterobacteriaceae of human origin are frequently identified; however, the emergence of NDM, and particularly novel variants, in bacteria of food animal origin has never been reported. Here, we characterize a novel NDM variant (assigned NDM-17) identified in a β-lactam-resistant sequence type 48 (ST48) Escherichia coli strain that was isolated from a chicken in China. Compared to NDM-1, NDM-17 had three amino acid substitutions (V88L, M154L, and E170K) that confer significantly enhanced carbapenemase activity. Compared to NDM-5, NDM-17 had only one amino acid substitution (E170K) and slightly increased isolate resistance to carbapenem, as indicated by increased MIC values. The gene encoding NDM-17 (blaNDM-17) was located on an IncX3 plasmid, which was readily transferrable to recipient E. coli strain J53 by conjugation, suggesting the possibility of the rapid dissemination of blaNDM-17. Enzyme kinetics showed that NDM-17 could hydrolyze all β-lactams tested, except for aztreonam, and had a significantly higher affinity for all β-lactams tested than did NDM-5. The emergence of this novel NDM variant could pose a threat to public health because of its transferability and enhanced carbapenemase activity

    Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid

    Get PDF
    Betulinic acid (BA) and its derivatives possess potent pharmacological activity against cancer and HIV. As with many phytochemicals, access to BA is limited by the requirement for laborious extraction from plant biomass where it is found in low amounts. This might be alleviated by metabolically engineering production of BA into an industrially relevant microbe such as Saccharomyces cerevisiae (yeast), which requires complete elucidation of the corresponding biosynthetic pathway. However, while cytochrome P450 enzymes (CYPs) that can oxidize lupeol into BA have been previously identified from the CYP716A subfamily, these generally do not seem to be specific to such biosynthesis and, in any case, have not been shown to enable high-yielding metabolic engineering. Here RoCYP01 (CYP716A155) was identified from the BA-producing plant Rosmarinus officinalis (rosemary) and demonstrated to effectively convert lupeol into BA, with strong correlation of its expression and BA accumulation. This was further utilized to construct a yeast strain that yields \u3e 1 g/L of BA, providing a viable route for biotechnological production of this valuable triterpenoid

    Antioxidant Activities of Hydrolysates of Arca Subcrenata Prepared with Three Proteases

    Get PDF
    In order to get products with antioxidant activity from Arca subcrenata Lischke, the optimal hydrolase and hydrolysis conditions were investigated in the paper. Three proteases (neutrase, alcalase and papain) were applied to hydrolyze the homogenate of A. subcrenata. An orthogonal design was used to optimize hydrolysis conditions, and the pH-stat methods was used to determine the degree of hydrolysis. Viewed from the angle of reducing power, such as scavenging activities against α,α-diphenyl-β-picrylhydrazyl (DPPH) radical and hydrogen peroxide, the antioxidant activities of the alcalase hydrolysate (AH) were superior to neutrase hydrolysate (NH) and papain hydrolysate (PH), and its EC50 values in DPPH radical and hydrogen peroxide scavenging effect were 6.23 mg/ml and 19.09 mg/ml, respectively. Moreover, compared with products hydrolyzed by neutrase and papain, the molecular mass of AH was lower and its content of amino acid of peptides was higher. Therefore, alcalase was selected as the optimal enzyme to produce active ingredients since its hydrolysate exhibited the best antioxidant activity among them and possessed large amount of potential active peptides

    From Feather to Adsorbent: Keratin Extraction, Chemical Modification, and Fe(III) Removal from Aqueous Solution

    No full text
    In this work, feather keratin was extracted from the waste feather of chicken via alkyd pretreatment and reduction method, the extraction rate is above 85%. The molecular weight and aggregation morphology of feather keratin in an aqueous environment were characterized by 18-angle laser light scattering gel permeation chromatography and field emission transmission electron microscopy. The relationship between the structure and properties of feather keratin is discussed. The 1-(3-dimethylaminopropyl) -3-ethylcarbondiimide hydrochloride and N-hydroxysuccinimide were used as activation system and cross-linkage. The gallic acid was used as modification reagent and was bonded to feather keratin chains; meanwhile, feather keratin chains were cross-linked through covalent bonds obtained the novel adsorbent (named as GA-FK gel). The GA-FK gel was investigated by IR, SEM, TGA, XRD, and BET methods. The results indicated that GA molecules successfully bonded to feather keratin chains and cross-linked between feather keratin chains. The GA-FK gel was found to have a three-dimensional network structure with abundant mesopores. Its pore size range is 1.8~90 nm; average pore size is 19.6 nm. Its specific surface area is 7.17 m2·g−1. In addition, GA-FK gel was applied to remove Fe(III) in water. The maximum adsorption capacity was 319.0 mg·g−1. The adsorption process of GA-FK gel to Fe(III) presents a typical two-stage pattern accompanied with swelling. The adsorption kinetics of GA-FK gel to Fe(III) follows the quasi-second-order model, the adsorption isotherm follows the Freundlich model. Therefore, the adsorption mechanism is non-specific adsorption

    From Feather to Adsorbent: Keratin Extraction, Chemical Modification, and Fe(III) Removal from Aqueous Solution

    No full text
    In this work, feather keratin was extracted from the waste feather of chicken via alkyd pretreatment and reduction method, the extraction rate is above 85%. The molecular weight and aggregation morphology of feather keratin in an aqueous environment were characterized by 18-angle laser light scattering gel permeation chromatography and field emission transmission electron microscopy. The relationship between the structure and properties of feather keratin is discussed. The 1-(3-dimethylaminopropyl) -3-ethylcarbondiimide hydrochloride and N-hydroxysuccinimide were used as activation system and cross-linkage. The gallic acid was used as modification reagent and was bonded to feather keratin chains; meanwhile, feather keratin chains were cross-linked through covalent bonds obtained the novel adsorbent (named as GA-FK gel). The GA-FK gel was investigated by IR, SEM, TGA, XRD, and BET methods. The results indicated that GA molecules successfully bonded to feather keratin chains and cross-linked between feather keratin chains. The GA-FK gel was found to have a three-dimensional network structure with abundant mesopores. Its pore size range is 1.8~90 nm; average pore size is 19.6 nm. Its specific surface area is 7.17 m2·g−1. In addition, GA-FK gel was applied to remove Fe(III) in water. The maximum adsorption capacity was 319.0 mg·g−1. The adsorption process of GA-FK gel to Fe(III) presents a typical two-stage pattern accompanied with swelling. The adsorption kinetics of GA-FK gel to Fe(III) follows the quasi-second-order model, the adsorption isotherm follows the Freundlich model. Therefore, the adsorption mechanism is non-specific adsorption

    An Eco-Friendly Polymer Composite Fertilizer for Soil Fixation, Slope Stability, and Erosion Control

    No full text
    In the Loess Plateau region, the poor structure and properties of loess slopes will cause many types of geological disasters such as landslides, mudflow, land collapse, soil erosion, and ground cracking. In this paper, an eco-friendly polymer composite fertilizer (PCF) based on corn straw wastes (CS) and geopolymer synthesized from loess was studied. The characterization by FT-IR of the PCF confirmed that graft copolymer is formed, while morphological analysis by scanning electron microscopy and energy dispersive spectroscopy showed that geopolymer and urea were embedded in the polymer porous network. The effects of PCF contents on the compressive strength of loess were investigated. The PCF was characterized in terms of surface curing test, temperature and freeze-thaw aging property, water and wind erosion resistance, and remediation soil acidity and alkalinity property, which indicates that PCF can improve loess slope fixation and stability by physical and chemical effects. Moreover, the loess slope planting experiment showed that PCF can significantly increase the germination rate of vegetation from 31% to 68% and promote the survival rate of slope vegetation from 45.2% to 67.7% to enhance biological protection for loess slopes. The PCF meets the demands of building and roadbed slope protection and water-soil conservation in arid and semi-arid regions, which opens a new application field for multifunctional polymer composite fertilizers with low cost and environmental remediation

    Cycloaddition Reaction of Carbon Dioxide to Epoxides Catalyzed by Polymer-Supported Quaternary Phosphonium Salts

    No full text
    Polymer-supported quaternary phosphonium salt (PS-QPS) was explored as effective catalyst for the coupling reaction of carbon dioxide with epoxides. e results indicated that cyclic carbonates with high yields (98.6%) and excellent selectivity (100%) could be prepared at the conditions of 5 MPa CO 2 , 150 ∘ C, and 6 h without the addition of organic solvents or cocatalysts. e effects of various reaction conditions on the catalytic performance were investigated in detail. e catalyst is applicable to a variety of epoxides, producing the corresponding cyclic carbonates in good yields. Furthermore, the catalyst could be recovered easily and reused for �ve times without loss of catalytic activity obviously. A proposed mechanism for synthesis of cyclic carbonate in the presence of PS-QPS was discussed. e catalyst was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectrum. It is believed that PS-QPS is of great potential for CO 2 �xation applications due to its unusual advantages, such as easy preparation, high activity and selectivity, stability, low cost, and reusability
    corecore