12,775 research outputs found

    Holographic model for antiferromagnetic quantum phase transition induced by magnetic field

    Get PDF
    We propose a gravity dual of antiferromagnetic quantum phase transition (QPT) induced by magnetic field and study the critical behavior around the quantum critical point (QCP). It turns out that the boundary critical theory is a strong coupling theory with dynamic exponent z=2z=2 and that the hyperscaling law is violated and logarithmic corrections appear near the QCP. Some novel scaling relations are predicated, which can be tested by experiment data in future. We also make some comparison with experimental data on low-dimensional magnets BiCoPO5_5 and pyrochlores Er2−2x_{2-2x}Y2x_{2x}Ti2_2O7_7.Comment: published versions in PR

    Cluster dynamical mean field theory of quantum phases on a honeycomb lattice

    Full text link
    We have studied the ground state of the half-filled Hubbard model on a honeycomb lattice by performing the cluster dynamical mean field theory calculations with exact diagonalization on the cluster-impurity solver. Through using elaborate numerical analytic continuation, we identify the existence of a `spin liquid' from the on-site interaction U=0 to UcU_c (between 4.6t4.6t and 4.85t4.85t) with a smooth crossover correspondingly from the charge fluctuation dominating phase into the charge correlation dominating phase. The semi-metallic state exits only at U=0. We further find that the magnetic phase transition at UcU_c from the `spin liquid' to the N\'{e}el antiferromagnetic Mott insulating phase is a first-order quantum phase transition. We also show that the charge fluctuation plays a substantial role on keeping the `spin liquid' phase against the emergence of a magnetic order.Comment: 5 pages and 8 figure

    Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    Get PDF
    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated

    Statistical Geometry of Packing Defects of Lattice Chain Polymer from Enumeration and Sequential Monte Carlo Method

    Get PDF
    Voids exist in proteins as packing defects and are often associated with protein functions. We study the statistical geometry of voids in two-dimensional lattice chain polymers. We define voids as topological features and develop a simple algorithm for their detection. For short chains, void geometry is examined by enumerating all conformations. For long chains, the space of void geometry is explored using sequential Monte Carlo importance sampling and resampling techniques. We characterize the relationship of geometric properties of voids with chain length, including probability of void formation, expected number of voids, void size, and wall size of voids. We formalize the concept of packing density for lattice polymers, and further study the relationship between packing density and compactness, two parameters frequently used to describe protein packing. We find that both fully extended and maximally compact polymers have the highest packing density, but polymers with intermediate compactness have low packing density. To study the conformational entropic effects of void formation, we characterize the conformation reduction factor of void formation and found that there are strong end-effect. Voids are more likely to form at the chain end. The critical exponent of end-effect is twice as large as that of self-contacting loop formation when existence of voids is not required. We also briefly discuss the sequential Monte Carlo sampling and resampling techniques used in this study.Comment: 29 pages, including 12 figure

    ENVIRONMENTAL LABELING OF ELECTRICITY: EFFECTS ON CONSUMER UNCERTAINTY ABOUT PRODUCT ATTRIBUTES AND LIKELIHOOD TO BUY DECISIONS

    Get PDF
    Using data collected by the U.S. Department of Energy we test how price and environmental marketing and labeling affects respondents' uncertainty about product attributes and about their purchase intentions.Consumer/Household Economics,

    Optimal Beamforming for Non-Regenerative MIMO Relays with Direct Link

    Get PDF
    Abstract—In this letter, we generalize the existing works on the design of the optimal relay amplifying matrix for nonregenerative multiple-input multiple-output (MIMO) relay communication systems by including the direct source-destination link. We show that for most commonly used objective functions, the optimal relay amplifying matrix has a general beamforming structure, that is, the relay first sets beams to the direction of the source-relay channel, then conducts a linear precoding, and finally beamforms towards the direction of the relay-destination channel. Index Terms—MIMO relay, linear non-regenerative relay, direct link. I

    Evolving small-world networks with geographical attachment preference

    Full text link
    We introduce a minimal extended evolving model for small-world networks which is controlled by a parameter. In this model the network growth is determined by the attachment of new nodes to already existing nodes that are geographically close. We analyze several topological properties for our model both analytically and by numerical simulations. The resulting network shows some important characteristics of real-life networks such as the small-world effect and a high clustering.Comment: 11 pages, 4 figure
    • …
    corecore