558 research outputs found

    Techniques and errors in measuring cross- correlation and cross-spectral density functions

    Get PDF
    Techniques and errors in measuring cross spectral density and cross correlation functions of stationary dynamic pressure dat

    Strain-controlled band engineering and self-doping in ultrathin LaNiO3_3 films

    Full text link
    We report on a systematic study of the temperature-dependent Hall coefficient and thermoelectric power in ultra-thin metallic LaNiO3_3 films that reveal a strain-induced, self-doping carrier transition that is inaccessible in the bulk. As the film strain varies from compressive to tensile at fixed composition and stoichiometry, the transport coefficients evolve in a manner strikingly similar to those of bulk hole-doped superconducting cuprates with varying doping level. Density functional calculations reveal that the strain-induced changes in the transport properties are due to self-doping in the low-energy electronic band structure. The results imply that thin-film epitaxy can serve as a new means to achieve hole-doping in other (negative) charge-transfer gap transition metal oxides without resorting to chemical substitution

    New Developments in Tellurite Glass Fibers

    Get PDF
    Recent developments on the manufacture of tellurite glass fibers are presented. Technical issues related to glass synthesis, preform manufacturing and fiber drawing as well as prospective of commercial exploitation are discussed

    Evidence for the weakly coupled electron mechanism in an Anderson-Blount polar metal

    Get PDF
    Over 50 years ago, Anderson and Blount proposed that ferroelectric-like structural phase transitions may occur in metals, despite the expected screening of the Coulomb interactions that often drive polar transitions. Recently, theoretical treatments have suggested that such transitions require the itinerant electrons be decoupled from the soft transverse optical phonons responsible for polar order. However, this decoupled electron mechanism (DEM) has yet to be experimentally observed. Here we utilize ultrafast spectroscopy to uncover evidence of the DEM in LiOsO_3, the first known band metal to undergo a thermally driven polar phase transition (T_c ≈ 140 K). We demonstrate that intra-band photo-carriers relax by selectively coupling to only a subset of the phonon spectrum, leaving as much as 60% of the lattice heat capacity decoupled. This decoupled heat capacity is shown to be consistent with a previously undetected and partially displacive TO polar mode, indicating the DEM in LiOsO_3

    Evidence for an extended critical fluctuation region above the polar ordering transition in LiOsO₃

    Get PDF
    Metallic Li Os O 3 undergoes a continuous ferroelectric-like structural phase transition below T c = 140 K to realize a polar metal. To understand the microscopic interactions that drive this transition, we study its critical behavior above T c via electromechanical coupling—distortions of the lattice induced by short-range dipole-dipole correlations arising from Li off-center displacements. By mapping the full angular distribution of second harmonic electric-quadrupole radiation from Li Os O 3 and performing a simplified hyper-polarizable bond model analysis, we uncover subtle symmetry-preserving lattice distortions over a broad temperature range extending from T c up to around 230 K, characterized by nonuniform changes in the short and long Li-O bond lengths. Such an extended region of critical fluctuations may explain anomalous features reported in specific heat and Raman scattering data and suggests the presence of competing interactions that are not accounted for in existing theoretical treatments. More broadly, our results showcase how electromechanical effects serve as a probe of critical behavior near inversion symmetry-breaking transitions in metals

    Evidence for an extended critical fluctuation region above the polar ordering transition in LiOsO3_3

    Get PDF
    Metallic LiOsO3_3 undergoes a continuous ferroelectric-like structural phase transition below TcT_c = 140 K to realize a polar metal. To understand the microscopic interactions that drive this transition, we study its critical behavior above TcT_c via electromechanical coupling - distortions of the lattice induced by short-range dipole-dipole correlations arising from Li off-center displacements. By mapping the full angular distribution of second harmonic electric-quadrupole radiation from LiOsO3_3 and performing a simplified hyper-polarizable bond model analysis, we uncover subtle symmetry-preserving lattice distortions over a broad temperature range extending from TcT_c up to around 230 K, characterized by non-uniform changes in the short and long Li-O bond lengths. Such an extended region of critical fluctuations may explain anomalous features reported in specific heat and Raman scattering data, and suggests the presence of competing interactions that are not accounted for in existing theoretical treatments. More broadly, our results showcase how electromechanical effects serve as a probe of critical behavior near inversion symmetry breaking transitions in metals.Comment: 6 pages main text, 4 figures, 10 pages supplementary informatio

    Database, Features, and Machine Learning Model to Identify Thermally Driven Metal-Insulator Transition Compounds

    Full text link
    Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file
    corecore