25 research outputs found

    cancers Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions

    Get PDF
    International audienceFocal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors

    Contribution of a tyrosine-based motif to cellular trafficking of wild-type and truncated NPY Y(1) receptors.

    Full text link
    peer reviewedThe human NPY Y(1) receptor undergoes fast agonist-induced internalization via clathrin-coated pits then recycles back to the cell membrane. In an attempt to identify the molecular determinants involved in this process, we studied several C-terminal truncation mutants tagged with EFGP. In the absence of agonist, Y(1) receptors lacking the last 32 C-terminal amino acids (Y(1)Delta32) are constitutively internalized, unlike full-length Y(1) receptors. At steady state, internalized Y(1)Delta32 receptors co-localize with transferrin, a marker of early and recycling endosomes. Inhibition of constitutive internalization of Y(1)Delta32 receptors by hypertonic sucrose or by co-expression of Rab5aS34N, a dominant negative form of the small GTPase Rab5a or depletion of all three isoforms of Rab5 indicates the involvement of clathrin-coated pits. In contrast, a truncated receptor lacking the last 42 C-terminal amino acids (Y(1)Delta42) does not constitutively internalize, consistent with the possibility that there is a molecular determinant responsible for constitutive internalization located in the last 10 amino acids of Y(1)Delta32 receptors. We show that the agonist-independent internalization of Y(1)Delta32 receptors involves a tyrosine-based motif YXXPhi. The potential role of this motif in the behaviour of full-length Y(1) receptors has also been explored. Our results indicate that a C-terminal tyrosine-based motif is critical for the constitutive internalization of truncated Y(1)Delta32 receptors. We suggest that this motif is masked in full-length Y(1) receptors which do not constitutively internalize in the absence of agonist

    Cancer Cell Int

    Get PDF
    BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS: The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS: We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-beta1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)]i). Finally we found that compounds known to increase [Ca(2+)]i in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION: Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy

    PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways

    Get PDF
    The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB

    4. Building of a Habitable Planet

    Full text link

    Rôle de la protéine FAK (Focal Adhésion Kinase) dans les mécanismes d'invasion cellulaire

    No full text
    Cette thèse traite du rôle de la protéine FAK (Focal Adhésion Kinase) dans les mécanismes d'invasion cellulaire.This thesis is about the role of the protein FAK (Focal Adhesion Kinase) in the cellular mechanisms of invasion.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Rôle de FAK (Focal Adhesion Kinase) dans le turnover des points d adhérence durant la migration cellulaire

    No full text
    STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF
    corecore