522 research outputs found

    Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS

    Get PDF
    Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8–12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40–60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations

    State of art in intra-articular hip injections of different medications for osteoarthritis: a systematic review

    Get PDF
    Background: Intra-articular hip injections for osteoarthritis represent a useful instrument to reduce pain and disability in the common clinical practice. Several medications can be injected locally with different level of evidence-based efficacy. Objective: The objective of this systematic review is to investigate the effectiveness of intra-articular injections of different medications or substances for the pain treatment and the management of disability in subjects affected by hip osteoarthritis. Methods: Two reviewers selected independently randomised controlled trials published in the last 10 years, using PubMed and Scopus databases. The risk of bias was evaluated with Cochrane library assessment tool. Results: 12 randomised controlled trials have been selected. We found 8 papers comparing hyaluronic acid with platelet rich plasma, with corticosteroids and with saline solution; 1 paper compares two types of hyaluronic acid with different molecular weights; 3 papers study the effects of corticosteroids alone or compared to ketorolac or saline solution. Conclusions: The studies reviewed were heterogeneous regarding sample size, level of osteoarthritis, evaluated with Kellegren-Lawrence score, medications used and follow up timings. However, we have observed that intra-articular injections of platelet-rich plasma seem to decrease pain at short term and disability at long term, in patients affected by hip osteoarthritis better than hyaluronic acid. The association of hyaluronic acid and corticosteroids could give better results compared to hyaluronic acid alone, while the use of intra-articular ketorolac and saline solution requires more studies

    Relax-and-fix heuristics applied to a real-world lot-sizing and scheduling problem in the personal care consumer goods industry

    Full text link
    This paper addresses an integrated lot-sizing and scheduling problem in the industry of consumer goods for personal care, a very competitive market in which the good customer service level and the cost management show up in the competition for the clients. In this research, a complex operational environment composed of unrelated parallel machines with limited production capacity and sequence-dependent setup times and costs is studied. There is also a limited finished-goods storage capacity, a characteristic not found in the literature. Backordering is allowed but it is extremely undesirable. The problem is described through a mixed integer linear programming formulation. Since the problem is NP-hard, relax-and-fix heuristics with hybrid partitioning strategies are investigated. Computational experiments with randomly generated and also with real-world instances are presented. The results show the efficacy and efficiency of the proposed approaches. Compared to current solutions used by the company, the best proposed strategies yield results with substantially lower costs, primarily from the reduction in inventory levels and better allocation of production batches on the machines

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page

    Cosmology with the submillimetre galaxies magnification bias: Tomographic analysis

    Get PDF
    Context. High-z submillimetre galaxies can be used as a background sample for gravitational lensing studies thanks to their magnification bias. In particular, the magnification bias can be exploited in order to constrain the free parameters of a halo occupation distribution (HOD) model and some of the main cosmological parameters. A pseudo-tomographic analysis shows that the tomographic approach should improve the parameter estimation. Aims. In this work the magnification bias has been evaluated as cosmological tool in a tomographic set-up. The cross-correlation function (CCF) data have been used to jointly constrain the astrophysical parameters Mmin, M1, and α in each of the selected redshift bins as well as the cosmological parameters ωM, σ8, and H0 for the lambda cold dark matter (ΛCDM) model. Moreover, we explore the possible time evolution of the dark energy density by also introducing the ω0, ωa parameters in the joint analysis (ω0CDM and ω0ωaCDM). Methods. The CCF was measured between a foreground spectroscopic sample of Galaxy And Mass Assembly galaxies and a background sample of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) galaxies. The foreground sample was divided into four redshift bins (0.1-0.2, 0.2-0.3, 0.3-0.5, and 0.5-0.8) and the sample of H-ATLAS galaxies has photometric redshifts > 1.2. The CCF was modelled using a halo model description that depends on HOD and cosmological parameters. Then a Markov chain Monte Carlo method was used to estimate the parameters for different cases. Results. For the ΛCDM model the analysis yields a maximum posterior value at 0.26 with [0.17, 0.41] 68% C.I. for ωM and at 0.87 with [0.75, 1] 68% C.I. for σ8. With our current results H0 is not yet constrained. With a more general ω0CDM model, the constraints on ωM and σ8 are similar, but we found a maximum posterior value for ω0 at -1 with [ - 1.56, -0.47] 68% C.I. In the ω0ωaCDM model, the results are -1.09 with [ - 1.72, -0.66] 68% C.I. for ω0 and -0.19 with [ - 1.88, 1.48] 68% C.I. for ωa. Conclusions. The results on Mmin show a trend towards higher values at higher redshift confirming recent findings. The tomographic analysis presented in this work improves the constraints in the σ8 - ωM plane with respect to previous findings exploiting the magnification bias and it confirms that magnification bias results do not show the degeneracy found with cosmic shear measurements. Moreover, related to dark energy, we found a trend of higher ω0 values for lower H0 values

    Semantic technologies for the production and publication of open data in ACI - Automobile club d’Italia

    Get PDF
    Semantic technologies combine knowledge representation techniques with artificial intelligence in order to achieve a more effective management of enterprise knowledge bases, thanks to the separation of the conceptual level of the applications from the logical and physical ones, and to the automatic reasoning services they deploy for data access and control. In this context, Ontology-based Data Management (OBDM) [3] has consolidated itself as a paradigm for data integration and governance, based on a three-tier architecture: the ontology, the data sources, and the mappings, which declaratively link the ontology predicates to the data in the sources. In this talk1 we present a joint project by Sapienza University of Rome, the Automobile Club d’Italia (ACI), and OKKAM S.r.l.2, a spinoff of the University of Trento. The objectives of the project were the definition of an ontology of ACI’s Public Vehicle Register (PRA) and car tax domains, the development of an OBDM system to access the data through such ontology, and the creation of a web portal for the publication of ACI’s car parc data in Linked Open format

    PEP mask therapy for the rehabilitation of a pre-term infant with respiratory distress syndrome: a case report

    Get PDF
    BACKGROUND: Preterm infants can develop many complications related to organs underdevelopment. Respiratory distress syndrome (RDS) is considered the most important cause of morbidity and mortality in these patients. Traditional therapies for severe RDS, such as mechanical ventilation, come with a potential risk for pneumothorax and bronchopulmonary dysplasia while evidence on chest physiotherapy in preterm infants are controversial in terms of feasibility, tolerability and safety. The use of the positive expiratory pressure (PEP) mask is known in the pediatric field especially in cystic fibrosis for the removal of secretions and lung re-expansion. However, no literature exists on the application and effectiveness of this treatment modality for the respiratory rehabilitation of preterm infants. In this study, we aimed to assess the efficacy of a respiratory rehabilitation protocol based on PEP mask in a preterm infant with respiratory distress syndrome. CASE REPORT: A Caucasian girl born at 26 and 5 weeks of gestational age with respiratory distress syndrome was treated with mechanical ventilation, oxygen therapy and PEP-mask. CLINICAL REHABILITATION IMPACT: Three weeks of PEP mask led to a significant clinical and radiological improvement of the lung’s function with progressive reduction of the oxygen supplement and mechanical ventilation until complete weaning off. Given the absence of literature on this subject, further studies should be conducted to confirm these preliminary observations

    Unveiling the nature of 11 dusty star-forming galaxies at the peak of cosmic star formation history

    Get PDF
    We present a panchromatic study of 11 (sub-)millimetre selected DSFGs with spectroscopically confirmed redshift (1.5 < zspec < 3) in the GOODS-S field, with the aim of constraining their astrophysical properties (e.g. age, stellar mass, dust, and gas content) and characterizing their role in the context of galaxy evolution. The multiwavelength coverage of GOODS-S, from X-rays to radio band, allow us to model galaxy SED by using cigale z with a novel approach, based on a physical motivated modelling of stellar light attenuation by dust. Median stellar mass (∼ 6.5 × 1010 M·) and SFR (∼ 241 M· yr-1) are consistent with galaxy main sequence at z ∼2. The galaxies are experiencing an intense and dusty burst of star formation (medianLIR ∼ 2 × 1012L·), with a median age of 750 Myr. The high median content of interstellar dust (Mdust ∼ 5 × 108 M·) suggests a rapid enrichment of the ISM (on time-scales ∼108 yr). We derived galaxy total and molecular gas content from CO spectroscopy and/or Rayleigh-Jeans dust continuum (1010 Mgas/M· 1011), depleted over a typical time-scale τdepl ∼200 Myr. X-ray and radio luminosities (LX = 1042-1044 erg s-1,L1.5, { m GHz}}=1030-C1 erg s-1,L 6, rm GHz=1029-C0 erg s-1) suggest that most of the galaxies hosts an accreting radio-silent/quiet SMBH. This evidence, along with their compact multiwavelength sizes (median rALMA ∼rVLA = 1.8 kpc, rHST = 2.3 kpc) measured from high-resolution imaging (θres 1 arcsec), indicates these objects as the high-z star-forming counterparts of massive quiescent galaxies, as predicted e.g. by the in situ scenario. Four objects show some signatures of a forthcoming/ongoing AGN feedback, which is thought to trigger the morphological transition from star-forming discs to ETGs

    An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history

    Get PDF
    We present the ALMA view of 11 main-sequence dusty star-forming galaxies (DSFGs) (sub-)millimetre selected in the Great Observatories Origins Survey South (GOODS-S) field and spectroscopically confirmed to be at the peak of cosmic star formation history (z ∼2). Our study combines the analysis of galaxy spectral energy distribution with ALMA continuum and CO spectral emission by using ALMA Science Archive products at the highest spatial resolution currently available for our sample (Δθ 1 arcsec). We include galaxy multiband images and photometry (in the optical, radio, and X-rays) to investigate the interlink between dusty, gaseous, and stellar components and the eventual presence of AGN. We use multiband sizes and morphologies to gain an insight on the processes that lead galaxy evolution, e.g. gas condensation, star formation, AGN feedback. The 11 DSFGs are very compact in the (sub-)millimetre (median rALMA = 1.15 kpc), while the optical emission extends to larger radii (median rH/rALMA = 2.05). CO lines reveal the presence of a rotating disc of molecular gas, but we cannot exclude the presence of interactions and/or molecular outflows. Images at higher (spectral and spatial) resolution are needed to disentangle from the possible scenarios. Most of the galaxies are caught in the compaction phase, when gas cools and falls into galaxy centre, fuelling the dusty burst of star formation and the growing nucleus. We expect these DSFGs to be the high-z star-forming counterparts of massive quiescent galaxies. Some features of CO emission in three galaxies are suggestive of forthcoming/ongoing AGN feedback, which is thought to trigger the morphological transition from star-forming discs to early-type galaxies
    corecore