11 research outputs found
Antimicrobial protein and Peptide concentrations and activity in human breast milk consumed by preterm infants at risk of late-onset neonatal sepsis
Objective: We investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period. Study design: Breast milk from mothers of preterm infants (≤32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth. Results: Levels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS. Conclusions: The concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens
The Sensitising Capacity of Intact �-Lactoglobulin Is Reduced by Co-Administration with Digested �-Lactoglobulin
Background: It is generally believed that protein hydrolysis in the gastrointestinal tract decreases the allergenicity of food allergens. However, it remains unknown if specific properties of digestion products determine whether a sensitisation or tolerogenic immune response will develop. We sought to examine the sensitising capacity of the cow’s milk allergen β-lactoglobulin (BLG) and digestion products thereof in a Brown Norway (BN) rat model. Methods: Intact BLG was digested in an in vitro model simulating the gastro-duodenal digestion process and subsequently fractionated by gel permeation chromatography. BN rats were dosed with either PBS, 200 μg of intact BLG, 30 μg of intact BLG, 200 μg of partially digested BLG, 200 μg of digested BLG, or with 200 μg of a fraction of large complexes or a fraction of small complexes. Sera from BN rats were analysed for specific antibodies and avidity was measured. Results: BLG partly resisted the digestion process. However, the BLG molecules that did not survive the digestion process were rapidly broken down to peptides of sizes less than Mr 4,500. Specific antibody responses revealed that both 200 and 30 μg of intact BLG had immunogenic as well as sensitising capacity, while digested BLG could not induce any specific antibodies. Most importantly, while intact BLG showed a significant sensitising capacity when administered alone, this sensitising capacity was significantly reduced when co-administered with digested BLG. Conclusions: Co-immunisation of intact BLG with digested BLG reduces the sensitising capacity of intact BLG, which could result from tolerogenic mechanisms induced by the digestion products.Copyright © 2012 S. Karger AG, Base
Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism.
Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes
The Effect of UV-C Pasteurization on Bacteriostatic Properties and Immunological Proteins of Donor Human Milk
BACKGROUND: Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk. METHODS: Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed. RESULTS: The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively. CONCLUSION: UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk
