8 research outputs found
Convergent evolution of pregnancy-specific glycoproteins in human and horse
Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs. Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet–fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal–fetal interactions
Recommended from our members
Learning in a pairwise term-term proximity framework for information retrieval
Traditional ad hoc retrieval models do not take into account the closeness or proximity of terms. Document scores in these models are primarily based on the occurrences or nonoccurrences of query-terms considered independently of each other. Intuitively, documents in which query-terms occur closer together should be ranked higher than documents in which the query-terms appear far apart.
This paper outlines several term-term proximity measures and develops an intuitive framework in which they can be used to fully model the proximity of all query-terms for a particular topic. As useful proximity functions may be constructed from many proximity measures, we use a learning approach to combine proximity measures to develop a useful proximity function in the framework. An evaluation of the best proximity functions show that there is a significant improvement over the baseline ad hoc retrieval model and over other more recent methods that employ the use of single proximity measures
Examining the information retrieval process from an inductive perspective
Term-weighting functions derived from various models of retrieval aim to model human notions of relevance more accurately. However, there is a lack of analysis of the sources of evidence from which important features of these term weighting schemes originate. In general, features pertaining to these term-weighting schemes can be collected from (1) the document, (2) the entire collection and (3) the query. In this work, we perform an empirical analysis to determine the increase in effectiveness as information from these three different sources becomes more accurate.
First, we determine the number of documents to be indexed to accurately estimate collection-wide features to obtain near optimal effectiveness for a range of a term-weighting functions. Similarly, we determine the amount of a document and query that must be sampled to achieve near-peak effectiveness. This analysis also allows us to determine the factors that contribute most to the performance of a term-weighting function (i.e. the document, the collection or the query).
We use our framework to construct a new model of weighting where we discard the 'bag of words' model and aim to retrieve documents based on the initial physical representation of a document using some basic axioms of retrieval. We show that this is a good first step towards incorporating some more interesting features into a term-weighting functio
Pregnancy-specific glycoproteins bind integrin alpha IIb beta 3 and inhibit the platelet-fibrinogen interaction
Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members encoded by multigene families in rodents and primates. In human pregnancy, PSGs are secreted by the syncytiotrophoblast, a fetal tissue, and reach a concentration of up to 400 mu g/ml in the maternal bloodstream at term. Human and mouse PSGs induce release of anti-inflammatory cytokines such as IL-10 and TGF beta 1 from monocytes, macrophages, and other cell types, suggesting an immunoregulatory function. RGD tri-peptide motifs in the majority of human PSGs suggest that they may function like snake venom disintegrins, which bind integrins and inhibit interactions with ligands. We noted that human PSG1 has a KGD, rather than an RGD motif. The presence of a KGD in barbourin, a platelet integrin alpha IIb beta 3 antagonist found in snake venom, suggested that PSG1 may be a selective alpha IIb beta 3 ligand. Here we show that human PSG1 binds alpha IIb beta 3 and inhibits the platelet - fibrinogen interaction. Unexpectedly, however, the KGD is not critical as multiple PSG1 domains independently bind and inhibit alpha IIb beta 3 function. Human PSG9 and mouse Psg23 are also inhibitory suggesting conservation of this function across primate and rodent PSG families. Our results suggest that in species with haemochorial placentation, in which maternal blood is in direct contact with fetal trophoblast, the high expression level of PSGs reflects a requirement to antagonise abundant (3 mg/ml) fibrinogen in the maternal circulation, which may be necessary to prevent platelet aggregation and thrombosis in the prothrombotic maternal environment of pregnancy
Human and mouse PSGs inhibit the platelet – fibrinogen interaction.
<p>PSG-mediated inhibition of the platelet – fibrinogen interaction was measured by estimating binding of Oregon Green-conjugated fibrinogen (OgFg) to washed human platelets using FACS. Fibrinogen binding to TRAP-activated platelets is set at 100% and resting platelets at 0%. All assays were analysed over a four or five point dose range of PSG proteins and mutants, from ∼5–100 or 200 µg/ml, depending on protein molecular weight. For clarity, some results are reported as single dose molar concentration comparisons between proteins. Protein molecular weights were calculated from amino acid sequences with no adjustments for posttranslational modifications. <b>a,</b> Binding of OgFg to human platelets in the presence of human CEACAM1, human IgG, and increasing doses of recombinant wildtype human PSG1. 4 µM PSG1 is equivalent to 200 µg/ml protein. <b>b,</b> Binding of OgFg to human platelets in the presence of (left to right): wildtype PSG1 (KGD); PSG1 in which the KGD tri-peptide motif is replaced with RGE, or AAA; PSG1 with deletion of N-domain; PSG1 N-domain; PSG1 N-domain in which the KGD tri-peptide motif is replaced with AAA. All proteins were used at 2 µM concentration, equivalent to 100 µg/ml full-length PSG1 variants, 75 µg/ml for PSG1ΔN, and 38 µg/ml for PSG1N variants. <b>c</b> & <b>d,</b> Binding of OgFg to human platelets in the presence of increasing concentrations of recombinant human PSG9 and mouse Psg23, respectively. 2 µM PSG9 and 2 µM Psg23 is equivalent to 100 µg/ml and 110 µg/ml, respectively. <b>e,</b> Summary of domain structures and mutants of PSG proteins used (see Fig. S3 in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0057491#pone.0057491.s001" target="_blank">File S1</a> for sequences). <b>f,</b> Representative Coomassie-stained gels of protein used. For a - d, data are means of between three and seven independent experiments (detailed in main text) ± S.E.M. *, P<0.05; **, P<0.01; ***, P<0.001, nonparametric ANOVA with Dunnett’s multiple comparison post test.</p
Multiple domains of human PSG1 bind the platelet integrin αIIbβ3.
<p><b>a,</b> Integrin αIIbβ3 (2µg purified protein; lanes 1–3) pulls down PSG1 in an <i>in vitro</i> binding assay (lane 1). Negative controls are Protein G agarose beads with (lane 2) and without (lane 4) αIIbβ3, and with rabbit IgG instead of PSG1 (lane 3). Similarly, αIIbβ3 from lysates of CHO cell line stably transfected with αIIbβ3 (lanes 7, 8), but not lysate of sham transfected CHO control cell line (lanes 5, 6) pulls down PSG1 in co-immunoprecipitation assays. Negative controls lack PSG1, but contain α-αIIbβ3 mAb bound to beads (lanes 5 & 7). Western blotted membranes were probed with α-αIIbβ3 mAb Sz22 (upper gel) and α-PSG1 mAb-5 (lower gel). <b>b,</b> Commercial purified integrin αIIbβ3 bound to Protein G agarose beads pulls down recombinant PSG1 (lane 1) and PSG1ΔN (lane 2). Negative controls lack PSG1 (lane 3) or αIIbβ3 (lane 4). Western blotted membranes were probed with α-αIIbβ3 mAb Sz22 (upper gel), and α-His-Tag pAb (lower gel) which detects tagged PSG1 and PSG1ΔN proteins. <b>c</b>, Representative image and pooled data of fluorescent PSG1 (PSG1–800) binding to CHO cell line stably transfected with αIIbβ3 compared to sham transfected CHO control cell line. Cell density was measured using SYTO60. Data are means of six independent experiments ± S.E.M. *, P<0.05, Paired Student’s t-test. <b>d,</b> Binding of the activation-dependent monoclonal antibody, PAC-1, to platelet αIIbβ3. Washed human platelets were preincubated with BSA or PSG1 at 200 µg/ml before the addition of PAC-1 antibody and the indicated platelet agonist: TRAP (4 µM), thromboxane mimetic U46619 (250 nM), ADP (10 µM) or epinephrine (25 µM). Data are means of four independent experiments ± S.E.M. *, P<0.05, Student’s t-test. <b>e,</b> Washed platelets adhere and spread extensively on fibrinogen-coated (20 µg/ml) glass slides but poorly on 1% BSA-coated slides. Pre-incubation of platelets with 200 µg/ml PSG1 significantly reduced platelet adhesion and spreading on fibrinogen. Permeabilized platelets were stained for polymerized F-actin with Alexa-488 fluorescein isothiocyanate phalloidin before visualisation using confocal microscopy. Representative images are shown. Scale bar is 20 µm. Graph shows quantification of platelet adhesion as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0057491#s4" target="_blank">Methods</a>. Data are means of three independent experiments ± S.E.M. *, P<0.05, Student’s t-test.</p
PSG1 does not activate platelets.
<p><b>a,</b> Washed human platelets were treated at 37°C for 3 min with TRAP (4 µM) and/or PSG1 (200 µg/ml) for 2 min as indicated. Alternatively platelets remained untreated (resting). Platelet activation was assessed by analysis of the phosphotyrosine profile by western blotting with the antiphosphotyrosine mAb 4G10. Experiment was performed twice. <b>b, c</b> & <b>d,</b> In a similar series of experiments, three different markers of platelet degranulation were assessed. For ADP secretion assay (b), platelets were treated with 4 µM TRAP and/or PSG1 (100 µg/ml) for 3 min at 37<sup> O</sup>C. For surface expression of CD62P (c) and CD63 (d) platelets were treated with 4 µM TRAP and/or PSG1 (100 µg/ml) for 10 min at RT as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0057491#s4" target="_blank">Methods</a>. Alternatively platelets remained untreated (resting). Data represent the means of three independent experiments ± S.E.M.</p