4 research outputs found

    Synthesis and characterization of redox polymers for a control of bacterial adhesion properties

    No full text
    En raison des propriĂ©tĂ©s redox rĂ©versibles du ferrocĂšne et de son activitĂ© antibactĂ©rienne, les polymĂšres Ă  base de ferrocĂšne sont intĂ©ressants pour synthĂ©tiser de nouveaux liants pour des revĂȘtements anti-adhĂ©sifs bactĂ©riens. Cette Ă©tude rend compte de l’homopolymĂ©risation et de la copolymĂ©risation de monomĂšres mĂ©thacryliques porteurs de groupes ferrocĂ©nyles avec le mĂ©thacrylate de lauryle (LM). Le mĂ©thacrylate de mĂ©thylferrocĂšne (FMMA) mais aussi quatre nouveaux monomĂšres nommĂ©s mĂ©thacrylate de 2- ferrocĂ©nylmĂ©thoxyĂ©thyle (FMOEMA), mĂ©thacrylate de 3-ferrocĂ©nylmĂ©thoxypropyle (FMOPMA), 4- ferrocĂ©nylmĂ©thoxybutyle (FMOBMA) et de 2-ferrocĂ©nylmĂ©thoxymĂ©thylĂ©thyle (FMOMEMA) ont d’ bord Ă©tĂ© synthĂ©tisĂ©s et ensuite polymĂ©risĂ©s via le procĂ©dĂ© RAFT. Les cinĂ©tiques ’homopolymĂ©risation ont Ă©tĂ© Ă©tudiĂ©es par RMN 1H in situ. La polymĂ©risation a Ă©tĂ© contrĂŽlĂ©e en utilisant le 2-cyanoprop-2-yl dithiobenzoate (CPDB) comme agent de transfert de chaĂźne, Ă  70°C, dans le toluĂšne deutĂ©rĂ©. Ces monomĂšres contenant le groupement ferrocĂ©nyle se sont rĂ©vĂ©lĂ©s trĂšs rĂ©actifs via le procĂ©dĂ© RAFT, conduisant Ă  des conversions de 96% et Ă  des polymĂšres de faibles indices de polymolĂ©cularitĂ© (Ð<1,6). La conversion des monomĂšres suit une cinĂ©tique de premier ordre (jusqu’à 80%) avec une augmentation linĂ©aire de la masse molaire en fonction de la conversion en monomĂšre. En utilisant le monomĂšre FMMA comme rĂ©fĂ©rence, l’ spacement entre la partie polymĂ©risable et le groupement ferrocĂ©nyle a Ă©tĂ© augmentĂ© pour le FMOEMA, FMOPMA, FMOMEMA et FMOBMA afin d’ mĂ©liorer la mobilitĂ© des groupements latĂ©raux. Cette mobilitĂ© se traduit par une diminution notable des tempĂ©ratures de transition vitreuse des homopolymĂšres entre le pFMMA et le pFMOBMA. De plus, les copolymĂšres diblocs prĂ©parĂ©s par voie sĂ©quencĂ©e prĂ©sentent deux tempĂ©ratures de transition vitreuse spĂ©cifiques Ă  chaque bloc, dĂ©montrant une incompatibilitĂ© de ces derniers. Les propriĂ©tĂ©s Ă©lectrochimiques des monomĂšres et celles des polymĂšres ont Ă©tĂ© caractĂ©risĂ©es par voltampĂ©romĂ©trie cyclique. Enfin, les propriĂ©tĂ©s anti-adhĂ©sives de ces homopolymĂšres et copolymĂšres diblocs vis-Ă -vis d’une bactĂ©rie marine ont Ă©tĂ© Ă©valuĂ©es.Due to the reversible redox properties of ferrocene and its antibacterial activity, ferrocenyl-based polymers are useful for the synthesis of new anti-adhesive binders for marine antifouling coatings. This study reports the homopolymerization and copolymerization with lauryl methacrylate of ferrocenyl-based methacrylic monomers. Ferrocenylmethyl methacrylate (FMMA) as well as four novel monomers, namely 2- (ferrocenylmethoxy)ethyl methacrylate (FMOEMA), 3-(ferrocenylmethoxy)propyl methacrylate (FMOPMA),4-(ferrocenylmethoxy)butyl methacrylate (FMOBMA) and 2-(ferrocenylmethoxy)methylethyl methacrylate (FMOMEMA) were first synthesized, and subsequently polymerized by the RAFT process. The homopolymerization kinetics were investigated by in situ NMR. The radical polymerization was controlled by using 2-cyanoprop-2-yl dithiobenzoate (CPDB) as a chain transfer agent, at 70 °C in deuterated toluene. These monomers containing a ferrocenyl moiety with alcoxy linkers were found to be as reactive as FMMA in RAFT polymerization, resulting in conversions of 96% and in polymers with low dispersities (ÐM < 1.6). Monomer conversion follows a first order kinetics (up to 80%) with a linear increase in the molecular mass as a function of the monomer conversion. By using the FMMA monomer as a reference, the length of the alcoxy linker between the ferrocene unit and the backbone was increased for FMOEMA, FMOPMA, FMOMEMA and FMOBMA to improve the mobility of the side groups. This increase in macromolecular mobility led to a significant decrease of glass transition temperatures of the homopolymers. In addition, diblock copolymers exhibited two glass transition temperatures indicating that the two blocks are incompatible. The electrochemical properties of the monomers and those of the polymers were characterized using cyclic voltammetry. Finally, the anti-adhesive properties of these homopolymers and diblock copolymers toward marine bacteria were evaluated

    SynthÚse et caractérisation de polymÚres à propriétés rédox pour un contrÎle des propriétés d'adhésion bactérienne

    No full text
    Due to the reversible redox properties of ferrocene and its antibacterial activity, ferrocenyl-based polymers are useful for the synthesis of new anti-adhesive binders for marine antifouling coatings. This study reports the homopolymerization and copolymerization with lauryl methacrylate of ferrocenyl-based methacrylic monomers. Ferrocenylmethyl methacrylate (FMMA) as well as four novel monomers, namely 2- (ferrocenylmethoxy)ethyl methacrylate (FMOEMA), 3-(ferrocenylmethoxy)propyl methacrylate (FMOPMA),4-(ferrocenylmethoxy)butyl methacrylate (FMOBMA) and 2-(ferrocenylmethoxy)methylethyl methacrylate (FMOMEMA) were first synthesized, and subsequently polymerized by the RAFT process. The homopolymerization kinetics were investigated by in situ NMR. The radical polymerization was controlled by using 2-cyanoprop-2-yl dithiobenzoate (CPDB) as a chain transfer agent, at 70 °C in deuterated toluene. These monomers containing a ferrocenyl moiety with alcoxy linkers were found to be as reactive as FMMA in RAFT polymerization, resulting in conversions of 96% and in polymers with low dispersities (ÐM < 1.6). Monomer conversion follows a first order kinetics (up to 80%) with a linear increase in the molecular mass as a function of the monomer conversion. By using the FMMA monomer as a reference, the length of the alcoxy linker between the ferrocene unit and the backbone was increased for FMOEMA, FMOPMA, FMOMEMA and FMOBMA to improve the mobility of the side groups. This increase in macromolecular mobility led to a significant decrease of glass transition temperatures of the homopolymers. In addition, diblock copolymers exhibited two glass transition temperatures indicating that the two blocks are incompatible. The electrochemical properties of the monomers and those of the polymers were characterized using cyclic voltammetry. Finally, the anti-adhesive properties of these homopolymers and diblock copolymers toward marine bacteria were evaluated.En raison des propriĂ©tĂ©s redox rĂ©versibles du ferrocĂšne et de son activitĂ© antibactĂ©rienne, les polymĂšres Ă  base de ferrocĂšne sont intĂ©ressants pour synthĂ©tiser de nouveaux liants pour des revĂȘtements anti-adhĂ©sifs bactĂ©riens. Cette Ă©tude rend compte de l’homopolymĂ©risation et de la copolymĂ©risation de monomĂšres mĂ©thacryliques porteurs de groupes ferrocĂ©nyles avec le mĂ©thacrylate de lauryle (LM). Le mĂ©thacrylate de mĂ©thylferrocĂšne (FMMA) mais aussi quatre nouveaux monomĂšres nommĂ©s mĂ©thacrylate de 2- ferrocĂ©nylmĂ©thoxyĂ©thyle (FMOEMA), mĂ©thacrylate de 3-ferrocĂ©nylmĂ©thoxypropyle (FMOPMA), 4- ferrocĂ©nylmĂ©thoxybutyle (FMOBMA) et de 2-ferrocĂ©nylmĂ©thoxymĂ©thylĂ©thyle (FMOMEMA) ont d’ bord Ă©tĂ© synthĂ©tisĂ©s et ensuite polymĂ©risĂ©s via le procĂ©dĂ© RAFT. Les cinĂ©tiques ’homopolymĂ©risation ont Ă©tĂ© Ă©tudiĂ©es par RMN 1H in situ. La polymĂ©risation a Ă©tĂ© contrĂŽlĂ©e en utilisant le 2-cyanoprop-2-yl dithiobenzoate (CPDB) comme agent de transfert de chaĂźne, Ă  70°C, dans le toluĂšne deutĂ©rĂ©. Ces monomĂšres contenant le groupement ferrocĂ©nyle se sont rĂ©vĂ©lĂ©s trĂšs rĂ©actifs via le procĂ©dĂ© RAFT, conduisant Ă  des conversions de 96% et Ă  des polymĂšres de faibles indices de polymolĂ©cularitĂ© (Ð<1,6). La conversion des monomĂšres suit une cinĂ©tique de premier ordre (jusqu’à 80%) avec une augmentation linĂ©aire de la masse molaire en fonction de la conversion en monomĂšre. En utilisant le monomĂšre FMMA comme rĂ©fĂ©rence, l’ spacement entre la partie polymĂ©risable et le groupement ferrocĂ©nyle a Ă©tĂ© augmentĂ© pour le FMOEMA, FMOPMA, FMOMEMA et FMOBMA afin d’ mĂ©liorer la mobilitĂ© des groupements latĂ©raux. Cette mobilitĂ© se traduit par une diminution notable des tempĂ©ratures de transition vitreuse des homopolymĂšres entre le pFMMA et le pFMOBMA. De plus, les copolymĂšres diblocs prĂ©parĂ©s par voie sĂ©quencĂ©e prĂ©sentent deux tempĂ©ratures de transition vitreuse spĂ©cifiques Ă  chaque bloc, dĂ©montrant une incompatibilitĂ© de ces derniers. Les propriĂ©tĂ©s Ă©lectrochimiques des monomĂšres et celles des polymĂšres ont Ă©tĂ© caractĂ©risĂ©es par voltampĂ©romĂ©trie cyclique. Enfin, les propriĂ©tĂ©s anti-adhĂ©sives de ces homopolymĂšres et copolymĂšres diblocs vis-Ă -vis d’une bactĂ©rie marine ont Ă©tĂ© Ă©valuĂ©es

    Quinones as an Efficient Molecular Scaffold in the Antibacterial/Antifungal or Antitumoral Arsenal

    No full text
    Quinone-based compounds constitute several general classes of antibiotics that have long shown unwavering efficiency against both Gram-positive and Gram-negative microbial infections. These quinone-based antibiotics are increasingly popular due to their natural origins and are used in natural beverages from herbs or plants in African, Chinese and Indian traditional medicines to treat and prevent various diseases. Quinone-based antibiotics display different bioactive profiles depending on their structures and exert specific biocidal and anti-biofilm properties, and based on recent literature, will be discussed herein
    corecore