2 research outputs found

    Self-consistent description of nuclear compressional modes

    Get PDF
    Isoscalar monopole and dipole compressional modes are computed for a variety of closed-shell nuclei in a relativistic random-phase approximation to three different parametrizations of the Walecka model with scalar self-interactions. Particular emphasis is placed on the role of self-consistency which by itself, and with little else, guarantees the decoupling of the spurious isoscalar-dipole strength from the physical response and the conservation of the vector current. A powerful new relation is introduced to quantify the violation of the vector current in terms of various ground-state form-factors. For the isoscalar-dipole mode two distinct regions are clearly identified: (i) a high-energy component that is sensitive to the size of the nucleus and scales with the compressibility of the model and (ii) a low-energy component that is insensitivity to the nuclear compressibility. A fairly good description of both compressional modes is obtained by using a ``soft'' parametrization having a compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR
    corecore