98 research outputs found

    Distribution of Extrasynaptic NMDA Receptors on Neurons

    Get PDF
    NMDA receptors are found in both synaptic and extrasynaptic locations on neurons. NMDA receptors also can be found on neurons in early stages prior to synaptogenesis, where they may be involved in migration and differentiation. Extrasynaptic NMDA receptors typically are associated with contacts with adjacent processes such as axons and glia. Extrasynaptic NMDA receptor clusters vary in size and may form associations with scaffolding proteins such as PSD-95 and SAP102. The best-characterized extrasynaptic NMDA receptors contain NR1 and NR2B subunits. Extrasynaptic NMDA receptors may be activated by glutamate spillover from synapses or from ectopic release of glutamate. Consequently, extrasynaptic NMDA receptor activation may occur under different circumstances than that for synaptic NMDA receptors, indicating different functional consequences for the neuron. In some cases, activation of extrasynaptic NMDA receptors may have a negative influence on the neuron, leading to cell damage and death, as may occur in some major diseases of the nervous system

    Fluorescence Recovery After Photobleaching (FRAP) of Fluorescence Tagged Proteins in Dendritic Spines of Cultured Hippocampal Neurons

    Get PDF
    FRAP has been used to quantify the mobility of GFP-tagged proteins. Using a strong excitation laser, the fluorescence of a GFP-tagged protein is bleached in the region of interest. The fluorescence of the region recovers when the unbleached GFP-tagged protein from outside of the region diffuses into the region of interest. The mobility of the protein is then analyzed by measuring the fluorescence recovery rate. This technique could be used to characterize protein mobility and turnover rate

    Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins

    Get PDF
    Functional expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in cerebellar granule cells requires stargazin, a member of a large family of four-pass transmembrane proteins. Here, we define a family of transmembrane AMPA receptor regulatory proteins (TARPs), which comprise stargazin, γ-3, γ-4, and γ-8, but not related proteins, that mediate surface expression of AMPA receptors. TARPs exhibit discrete and complementary patterns of expression in both neurons and glia in the developing and mature central nervous system. In brain regions that express multiple isoforms, such as cerebral cortex, TARP–AMPA receptor complexes are strictly segregated, suggesting distinct roles for TARP isoforms. TARPs interact with AMPA receptors at the postsynaptic density, and surface expression of mature AMPA receptors requires a TARP. These studies indicate a general role for TARPs in controlling synaptic AMPA receptors throughout the central nervous system

    Preserved acute pain and impaired neuropathic pain in mice lacking protein interacting with C Kinase 1

    Get PDF
    Protein interacting with C Kinase 1 (PICK1), a PDZ domain-containing scaffolding protein, interacts with multiple different proteins in the mammalian nervous system and is believed to play important roles in diverse physiological and pathological conditions. In this study, we report that PICK1 is expressed in neurons of the dorsal root ganglion (DRG) and spinal cord dorsal horn, two major pain-related regions. PICK1 was present in approximately 29.7% of DRG neurons, most of which were small-less than 750 μm2 in cross-sectional area. Some of these PICK1-positive cells co-labeled with isolectin B4 or calcitonin-gene-related peptide. In the dorsal horn, PICK1 immunoreactivity was concentrated in the superficial dorsal horn, where it was prominent in the postsynaptic density, axons, and dendrites. Targeted disruption of PICK1 gene did not affect basal paw withdrawal responses to acute noxious thermal and mechanical stimuli or locomotor reflex activity, but it completely blocked the induction of peripheral nerve injury-induced mechanical and thermal pain hypersensitivities. PICK1 appears to be required for peripheral nerve injury-induced neuropathic pain development and to be a potential biochemical target for treating this disorder

    Molecular dissection of Neuroligin 2 and Slitrk3 reveals an essential framework for GABAergic synapse development

    Get PDF
    In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development

    Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea

    Get PDF
    Primary cilia have been implicated in the generation of planar cell polarity (PCP). However, variations in the severity of polarity defects in different cilia mutants, coupled with recent demonstrations of non-cilia-related actions of some cilia genes, make it difficult to determine the basis of these polarity defects. To address this issue, we evaluated PCP defects in cochlea from a selection of mice with mutations in cilia-related genes. Results indicated notable PCP defects, including mis-oriented hair cell stereociliary bundles, in Bbs8 and Ift20 single mutants that are more severe than in other cilia gene knockouts. In addition, deletion of either Bbs8 or Ift20 results in disruptions in asymmetric accumulation of the core PCP molecule Vangl2 in cochlear cells, suggesting a role for Bbs8 and/or Ift20, possibly upstream of core PCP asymmetry. Consistent with this, co-immunoprecipitation experiments indicate direct interactions of Bbs8 and Ift20 with Vangl2. We observed localization of Bbs and Ift proteins to filamentous actin as well as microtubules. This could implicate these molecules in selective trafficking of membrane proteins upstream of cytoskeletal reorganization, and identifies new roles for cilia-related proteins in cochlear PCP

    Results of the first European Source Apportionment intercomparison for Receptor and Chemical Transport Models

    Get PDF
    In this study, the performance of the source apportionment model applications were evaluated by comparing the model results provided by 44 participants adopting a methodology based on performance indicators: z-scores and RMSEu, with pre-established acceptability criteria. Involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), provided a unique opportunity to cross-validate them. In addition, comparing the modelled source chemical profiles, with those measured directly at the source contributed to corroborate the chemical profile of the tested model results. The most used RM was EPA- PMF5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) and more difficulties are observed with SCE time series (72% of RMSEu accepted). Industry resulted the most problematic source for RMs due to the high variability among participants. Also the results obtained with CTMs were quite comparable to their ensemble reference using all models for the overall average (>92% of successful z-scores) while the comparability of the time series is more problematic (between 58% and 77% of the candidates’ RMSEu are accepted). In the CTM models a gap was observed between the sum of source contributions and the gravimetric PM10 mass likely due to PM underestimation in the base case. Interestingly, when only the tagged species CTM results were used in the reference, the differences between the two CTM approaches (brute force and tagged species) were evident. In this case the percentage of candidates passing the z-score and RMSEu tests were only 50% and 86%, respectively. CTMs showed good comparability with RMs for the overall dataset (83% of the z-scores accepted), more differences were observed when dealing with the time series of the single source categories. In this case the share of successful RMSEu was in the range 25% - 34%.JRC.C.5-Air and Climat

    CIL:9151, Rattus, interneuron. In Cell Image Library

    No full text
    corecore