2,873 research outputs found
MEMS-Based Terahertz Photoacoustic Chemical Sensing System
Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in the chamber, and PA molecular spectroscopy of a gas species was performed. An optical measurement technique was used to evaluate the PA effect on the cantilever sensor; a laser beam was reflected off the cantilever tip and through an iris to a photodiode. As the cantilever movement deflected the laser beam, the beam was clipped by an iris and generated the PA signal. Experimental data indicated a predominantly linear response in signal amplitude from the photodiode measurement technique, which directly correlated to measured cantilever deflections. Using the custom-designed PA chamber and MEMS cantilever sensor, excellent low-pressure PA spectral data of methyl cyanide (CH3CN) at 2 to 40 mTorr range has been obtained. At low chamber pressures, the sensitivity of our system was 1.97 × 10−5 cm−1 and had an excellent normalized noise equivalent absorption (NNEA) coefficient of 1.39 × 10−9 cm−1 W Hz-½ using a 0.5 s signal averaging time
Terahertz Photoacoustic Spectroscopy Using an MEMS Cantilever Sensor
In this paper, a microelectromechanical systems cantilever sensor was designed, modeled, and fabricated to measure the photoacoustic (PA) response of gases under very low vacuum conditions. The micromachined devices were fabricated using silicon-on-insulator wafers and then tested in a custom-built, miniature, vacuum chamber during this first-ever demonstration. Terahertz radiation was amplitude modulated to excite the gas under test and perform PA molecular spectroscopy. Experimental data show a predominantly linear response that directly correlates measured cantilever deflection to PA signals. Excellent low pressure (i.e., 2-40 mTorr) methyl cyanide PA spectral data were collected resulting in a system sensitivity of 1.97 × 10 -5 cm -1 and a normalized noise equivalent absorption coefficient of 1.39 × 10 -9 cm -1 W Hz -1/2
Faint, moving objects in the Hubble Deep Field: components of the dark halo?
The deepest optical image of the sky, the Hubble Deep Field (HDF), obtained
with the Hubble Space Telescope (HST) in December 1995, has been compared to a
similar image taken in December 1997. Two very faint, blue, isolated and
unresolved objects are found to display a substantial apparent proper motion,
23+/-5 mas/yr and 26+/-5 mas/yr; a further three objects at the detection limit
of the second epoch observations may also be moving. Galactic structure models
predict a general absence of stars in the color-magnitude range in which these
objects are found. However, these observations are consistent with
recently-developed models of old white dwarfs with hydrogen atmospheres, whose
color, contrary to previous expectations, has been shown to be blue. If these
apparently moving objects are indeed old white dwarfs with hydrogen atmospheres
and masses near 0.5 M_Sun, they have ages of approximately 12 Gyr, and a local
mass density that is sufficient, within the large uncertainties arising from
the small size of the sample, to account for the entire missing Galactic
dynamical mass.Comment: 6 pages, using emulateapj, including 2 colour figures, accepted for
publication in ApJ Letter
Planetary science
The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed
MEMS-Based Terahertz Photoacoustic Chemical Sensing System
Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in the chamber, and PA molecular spectroscopy of a gas species was performed. An optical measurement technique was used to evaluate the PA effect on the cantilever sensor; a laser beam was reflected off the cantilever tip and through an iris to a photodiode. As the cantilever movement deflected the laser beam, the beam was clipped by an iris and generated the PA signal. Experimental data indicated a predominantly linear response in signal amplitude from the photodiode measurement technique, which directly correlated to measured cantilever deflections. Using the custom-designed PA chamber and MEMS cantilever sensor, excellent low-pressure PA spectral data of methyl cyanide (CH3CN) at 2 to 40 mTorr range has been obtained. At low chamber pressures, the sensitivity of our system was 1.97 × 10−5 cm−1 and had an excellent normalized noise equivalent absorption (NNEA) coefficient of 1.39 × 10−9 cm−1 W Hz-½ using a 0.5 s signal averaging time
Fabrication of Microelectromechanical Systems (MEMS) Cantilevers for Photoacoustic (PA) Detection of Terahertz (THz) Radiation
Historically, spectroscopy has been a cumbersome endeavor due to the relatively large sizes (3ft – 100ft in length) of modern spectroscopy systems. Taking advantage of the photoacoustic effect would allow for much smaller absorption chambers since the photoacoustic (PA) effect is independent of the absorption path length. In order to detect the photoacoustic waves being generated, a photoacoustic microphone would be required. This paper reports on the fabrication efforts taken in order to create microelectromechanical systems (MEMS) cantilevers for the purpose of sensing photoacoustic waves generated via terahertz (THz) radiation passing through a gaseous sample. The cantilevers are first modeled through the use of the finite element modeling software, CoventorWare®. The cantilevers fabricated with bulk micromachining processes and are 7x2x0.010mm on a silicon-on-insulator (SOI) wafer which acts as the physical structure of the cantilever. The devices are released by etching through the wafer’s backside and etching through the buried oxide with hydrofluoric acid. The cantilevers are placed in a test chamber and their vibration and deflection are measured via a Michelson type interferometer that reflects a laser off a gold tip evaporated onto the tip of the cantilever. The test chamber is machined from stainless steel and housed in a THz testing environment at Wright State University. Fabricated devices have decreased residual stress and larger radii of curvatures by approximately 10X
Recommended from our members
Association of Systemic Inflammation With Retinal Vascular Caliber in Patients With AIDS.
PurposeTo evaluate relationships among retinal vascular caliber and biomarkers of systemic inflammation in patients with AIDS.MethodsA total of 454 participants with AIDS had retinal vascular caliber (central retinal artery equivalent and central retinal vein equivalent) determined from enrollment retinal photographs by reading center graders masked to clinical and biomarker information. Cryopreserved plasma specimens were assayed for inflammatory biomarkers, including C-reactive protein (CRP), IL-6, interferon-γ inducible protein (IP)-10, kynurenine/tryptophan (KT) ratio, and intestinal fatty acid binding protein (I-FABP).ResultsIn the simple linear regression of retinal vascular caliber on plasma biomarkers, elevated CRP, IL-6, and IP-10 were associated with retinal venular dilation, and elevated KT ratio with retinal arteriolar narrowing. In the multiple linear regression, including baseline characteristics and plasma biomarkers, AMD was associated with dilation of retinal arterioles (mean difference: 9.1 μm; 95% confidence interval [CI] 5.2, 12.9; P < 0.001) and venules (mean difference, 10.9 μm; 95% CI, 5.3, 16.6; P < 0.001), as was black race (P < 0.001). Hyperlipidemia was associated with retinal venular narrowing (mean difference, -7.5 μm; 95% CI, -13.7, -1.2; P = 0.02); cardiovascular disease with arteriolar narrowing (mean difference, -5.2 μm; 95% CI, -10.3, -0.1; P = 0.05); age with arteriolar narrowing (slope, -0.26 μm/year; 95% CI, -0.46, -0.06; P = 0.009); and IL-6 with venular dilation (slope, 5.3 μm/standard deviation log10[plasma IL-6 concentration]; 95% CI, 2.7, 8.0; P < 0.001).ConclusionsThese data suggest that retinal vascular caliber is associated with age, race, AMD, hyperlipidemia, cardiovascular disease, and selected biomarkers of systemic inflammation
- …