117 research outputs found

    Climate Control System Improvements-Planning Phase

    Get PDF
    The Wildlife Conservation Society Archives comprises records created over WCS’s 119-year history. The Archives is currently undergoing a revitalization led by major improvements to the care of and access to the collections. Recently, WCS Administration identified a new location for the collections, which offers a far stronger opportunity than the current location to develop a sustainable preservation environment. The proposed project will result in the WCS Archives Conceptual Preservation Design Plan. Founded upon preservation strategies balancing effectiveness, cost, and environmental impact, this plan will serve as the crucial first step in the Archives’ relocation to this new space. By convening an interdisciplinary team to work collaboratively on this plan, the Archives seeks to develop the foundation that will guide the sustainable protection of the WCS Archives’ physical collections and the continued study and enjoyment of these unique collections by future generations

    Precipitation Hardenable High Temperature Shape Memory Alloy

    Get PDF
    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %

    APIS: Arkansas Planning Information System

    Get PDF
    The Federal Water Pollution Control Act Amendments of 1972 call for the restoration and maintenance of the chemical, physical and biological integrity of the Nation\u27s waters. The Act sets forth two primary goals; 1) the elimination of the discharge of all pollutants into the navigable waters of the United States by 1985 and 2) an interim level of water quality that provides for the protection of fish, shellfish, wildlife and recreation by July 1, 1983. Section 208 of the Act mandated the development and implementation of area wide water quality management plans to achieve the goals previously mentioned

    Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    Get PDF
    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions

    Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    Get PDF
    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire

    The lifetime of nitrogen oxides in an isoprene-dominated forest

    Get PDF
    The lifetime of nitrogen oxides (NO_x) affects the concentration and distribution of NO_x and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NO_x is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NO_x and NO_x reservoirs. We find that the lifetime of NO_x during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h^(−1) during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO_3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO_3 and the primary pathway to permanent removal of NO_x from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NO_x lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NO_x in temporary reservoirs, including acyl peroxy nitrates and ΣANs

    The Gemini Planet Imager View of the HD 32297 Debris Disk

    Get PDF
    We present new H-band scattered light images of the HD 32297 edge-on debris disk obtained with the Gemini Planet Imager. The disk is detected in total and polarized intensity down to a projected angular separation of 0.?15, or 20 au. On the other hand, the large-scale swept-back halo remains undetected, likely a consequence of its markedly blue color relative to the parent body belt. We analyze the curvature of the disk spine and estimate a radius of ?100 au for the parent body belt, smaller than past scattered light studies but consistent with thermal emission maps of the system. We employ three different flux-preserving post-processing methods to suppress the residual starlight and evaluate the surface brightness and polarization profile along the disk spine. Unlike past studies of the system, our high-fidelity images reveal the disk to be highly symmetric and devoid of morphological and surface brightness perturbations. We find the dust scattering properties of the system to be consistent with those observed in other debris disks, with the exception of HR 4796. Finally, we find no direct evidence for the presence of a planetary-mass object in the system

    The Grizzly, November 19, 1991

    Get PDF
    Founders\u27 Day Excitement • Grizzly Network Career Day • Women\u27s Choices • Volksmarching • Louisiana Election • Service Opportunities for Students • The European Situation • Jonas Salk Addresses Founders Day Convocation • Dr. Takats Awarded the Clamer Chair • Wellness Services Proposal • U.S.G.A. Minutes • Ursinus Continues Helping Habitat • Turkey Drive Needs You • Zack: The Man, The Myth, The Statue • Hocus Pocus a Success • Ursinus Students in Community Production of Gypsy • Movie Review: Hamlet • Battle of the Bands • Rollins Rocks Lower Lounge • Branker Tours to St. Petersburg • CAB Trip to New York • Writing in Good Taste • Magic: One Trick Too Many • Letters: Faculty Members Speak Out; GALA Replies to Letter; Call for Diversity; Publishing the Truth?; Student Reaction to Ronning; Response to Black Hole ; Students React to Social Life • No More Crap! • Filling in the Black Hole • One Professor\u27s Awakening • Lady Bears End Season • Men\u27s Lacrosse Awaits Chance • Women Swimmers Wash Out Washington • Spinella Takes Over as Head Coach of Basketball Team • Dickinson Defeats the Bearshttps://digitalcommons.ursinus.edu/grizzlynews/1284/thumbnail.jp

    Debris Disk Results from the Gemini Planet Imager Exoplanet Survey\u27s Polarimetric Imaging Campaign

    Get PDF
    We report the results of a ∼4 yr direct imaging survey of 104 stars to resolve and characterize circumstellar debris disks in scattered light as part of the Gemini Planet Imager (GPI) Exoplanet Survey. We targeted nearby (≲150 pc), young (≲500 Myr) stars with high infrared (IR) excesses (L IR/L ∗ \u3e 10-5), including 38 with previously resolved disks. Observations were made using the GPI high-contrast integral field spectrograph in H-band (1.6 μm) coronagraphic polarimetry mode to measure both polarized and total intensities. We resolved 26 debris disks and 3 protoplanetary/transitional disks. Seven debris disks were resolved in scattered light for the first time, including newly presented HD 117214 and HD 156623, and we quantified basic morphologies of five of them using radiative transfer models. All of our detected debris disks except HD 156623 have dust-poor inner holes, and their scattered-light radii are generally larger than corresponding radii measured from resolved thermal emission and those inferred from spectral energy distributions. To assess sensitivity, we report contrasts and consider causes of nondetections. Detections were strongly correlated with high IR excess and high inclination, although polarimetry outperformed total intensity angular differential imaging for detecting low-inclination disks (≲70°). Based on postsurvey statistics, we improved upon our presurvey target prioritization metric predicting polarimetric disk detectability. We also examined scattered-light disks in the contexts of gas, far-IR, and millimeter detections. Comparing H-band and ALMA fluxes for two disks revealed tentative evidence for differing grain properties. Finally, we found no preference for debris disks to be detected in scattered light if wide-separation substellar companions were present
    • …
    corecore