81 research outputs found

    Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts

    Get PDF
    Adoptive transfer of large numbers of tumor-reactive CD8+ cytotoxic T lymphocytes (CTLs) expanded and differentiated in vitro has shown promising clinical activity against cancer. However, such protocols are complicated by extensive ex vivo manipulations of tumor-reactive cells and have largely focused on CD8+ CTLs, with much less emphasis on the role and contribution of CD4+ T cells. Using a mouse model of advanced melanoma, we found that transfer of small numbers of naive tumor-reactive CD4+ T cells into lymphopenic recipients induces substantial T cell expansion, differentiation, and regression of large established tumors without the need for in vitro manipulation. Surprisingly, CD4+ T cells developed cytotoxic activity, and tumor rejection was dependent on class II–restricted recognition of tumors by tumor-reactive CD4+ T cells. Furthermore, blockade of the coinhibitory receptor CTL-associated antigen 4 (CTLA-4) on the transferred CD4+ T cells resulted in greater expansion of effector T cells, diminished accumulation of tumor-reactive regulatory T cells, and superior antitumor activity capable of inducing regression of spontaneous mouse melanoma. These findings suggest a novel potential therapeutic role for cytotoxic CD4+ T cells and CTLA-4 blockade in cancer immunotherapy, and demonstrate the potential advantages of differentiating tumor-reactive CD4+ cells in vivo over current protocols favoring in vitro expansion and differentiation

    Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer

    No full text
    Immunotherapy is revolutionizing cancer care across disciplines. The original success of immune checkpoint blockade in melanoma has already been translated to Food and Drug Administration–approved therapies in a number of other cancers, and a large number of clinical trials are underway in many other disease types, including breast cancer. Here, we review the basic requirements for a successful antitumor immune response, with a focus on the metabolic and physical barriers encountered by lymphocytes entering breast tumors. We also review recent clinical trials of immunotherapy in breast cancer and provide a number of interesting questions that will need to be answered for successful breast cancer immunotherapy

    Molecular–Genetic Imaging: A Nuclear Medicine–Based Perspective

    No full text
    Molecular imaging is a relatively new discipline, which developed over the past decade, initially driven by in situ reporter imaging technology. Noninvasive in vivo molecular–genetic imaging developed more recently and is based on nuclear (positron emission tomography [PET], gamma camera, autoradiography) imaging as well as magnetic resonance (MR) and in vivo optical imaging. Molecular–genetic imaging has its roots in both molecular biology and cell biology, as well as in new imaging technologies. The focus of this presentation will be nuclear-based molecular–genetic imaging, but it will comment on the value and utility of combining different imaging modalities. Nuclear-based molecular imaging can be viewed in terms of three different imaging strategies: (1) “indirect” reporter gene imaging; (2) “direct” imaging of endogenous molecules; or (3) “surrogate” or “bio-marker” imaging. Examples of each imaging strategy will be presented and discussed. The rapid growth of in vivo molecular imaging is due to the established base of in vivo imaging technologies, the established programs in molecular and cell biology, and the convergence of these disciplines. The development of versatile and sensitive assays that do not require tissue samples will be of considerable value for monitoring molecular–genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular–genetic and cellular processes will complement established ex vivo molecular–biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases and disease processes

    Molecular-genetic imaging: current and future perspectives

    No full text

    Response to Drs. Hertzman and Zeeberg

    No full text
    • …
    corecore