48 research outputs found

    Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo

    Get PDF
    BACKGROUND: Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5 )huntingtin deficient embryos. RESULTS: In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. CONCLUSION: Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease

    Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism

    Get PDF
    BACKGROUND: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. METHODS: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C(-/- )mice) and the metabolic consequences assessed. RESULTS: PEPCK-C(-/-) mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C(-/- )mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), β-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C(-/- )mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-(14)C]-acetate, and [5-(14)C]-glutamate to (14)CO(2 )by liver slices from PEPCK-C(-/- )mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C(-/- )mice was 10 times that of controls. CONCLUSION: We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C(-/- )mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver

    Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product

    Get PDF
    Cajal bodies (CBs) are nuclear suborganelles involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). In addition to snRNPs, they are highly enriched in basal transcription and cell cycle factors, the nucleolar proteins fibrillarin (Fb) and Nopp140 (Nopp), the survival motor neuron (SMN) protein complex, and the CB marker protein, p80 coilin. We report the generation of knockout mice lacking the COOH-terminal 487 amino acids of coilin. Northern and Western blot analyses demonstrate that we have successfully removed the full-length coilin protein from the knockout animals. Some homozygous mutant animals are viable, but their numbers are reduced significantly when crossed to inbred backgrounds. Analysis of tissues and cell lines from mutant animals reveals the presence of extranucleolar foci that contain Fb and Nopp but not other typical nucleolar markers. These so-called “residual” CBs neither condense Sm proteins nor recruit members of the SMN protein complex. Transient expression of wild-type mouse coilin in knockout cells results in formation of CBs and restores these missing epitopes. Our data demonstrate that full-length coilin is essential for proper formation and/or maintenance of CBs and that recruitment of snRNP and SMN complex proteins to these nuclear subdomains requires sequences within the coilin COOH terminus

    Huntingtin facilitates polycomb repressive complex 2

    Get PDF
    Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat α-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large α-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure–function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in HdhQ111 EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's α-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region

    An evolutionary driver of interspersed segmental duplications in primates

    Get PDF
    Background The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP). Results Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. Conclusions LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution

    Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer's Disease pathology

    Get PDF
    GRB-associated binding protein 2 (GAB2) represents a compelling genome-wide association signal for late-onset Alzheimer’s disease (LOAD) with reported odds ratios (ORs) ranging from 0.75–0.85. We tested eight GAB2 variants in four North American Caucasian case-control series (2,316 LOAD, 2,538 controls) for association with LOAD. Meta-analyses revealed ORs ranging from (0.61–1.20) with no significant association (all p>0.32). Four variants were hetergeneous across the populations (all p<0.02) due to a potentially inflated effect size (OR = 0.61–0.66) only observed in the smallest series (702 LOAD, 209 controls). Despite the lack of association in our series, the previously reported protective association for GAB2 remained after meta-analyses of our data with all available previously published series (11,952-22,253 samples; OR = 0.82–0.88; all p<0.04). Using a freely available database of lymphoblastoid cell lines we found that protective GAB2 variants were associated with increased GAB2 expression (p = 9.5×10−7−9.3×10−6). We next measured GAB2 mRNA levels in 249 brains and found that decreased neurofibrillary tangle (r = −0.34, p = 0.0006) and senile plaque counts (r = −0.32, p = 0.001) were both good predictors of increased GAB2 mRNA levels albeit that sex (r = −0.28, p = 0.005) may have been a contributing factor. In summary, we hypothesise that GAB2 variants that are protective against LOAD in some populations may act functionally to increase GAB2 mRNA levels (in lymphoblastoid cells) and that increased GAB2 mRNA levels are associated with significantly decreased LOAD pathology. These findings support the hypothesis that Gab2 may protect neurons against LOAD but due to significant population heterogeneity, it is still unclear whether this protection is detectable at the genetic level
    corecore