130 research outputs found

    Search for surviving companions in type Ia supernova remnants

    Full text link
    The nature of the progenitor systems of type~Ia supernovae is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions. Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- and helium-rich surviving companions, the color and magnitude of main-sequence- and helium-rich surviving companions are predicted as functions of time. The surviving companion candidates in Galactic type~Ia supernova remnants and nearby extragalactic type~Ia supernova remnants are discussed. We find that the maximum detectable distance of main-sequence surviving companions (helium-rich surviving companions) is 0.6−40.6-4~Mpc (0.4−160.4-16~Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for surviving companions. However, only five Ia~SNRs have been searched for surviving companions, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of type Ia supernovae, we encourage the search for surviving companions in other nearby type Ia supernova remnants.Comment: 25 pages, 5 figures, and 2 tables. Accepted for publication in Ap

    Masses and envelope binding energies of primary stars at the onset of a common envelope

    Get PDF
    We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. (2010) and follow the evolution of a population of binary stars up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donor's envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter {\lambda_\mathrm{env}} from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that {\lambda_\mathrm{env}} varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20--50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter {\alpha_\mathrm{CE}}. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for {\lambda_\mathrm{env}}, and the use of {\lambda_\mathrm{env}} in general, unnecessary.Comment: 6 pages, 3 figures, 1 table; to be published in the proceedings of the conference "Binary Star Evolution", in Mykonos, Greece, held in June 22-25, 201

    The Spectral States of Black Hole X-ray Binary Sources

    Get PDF
    A framework for the interpretation of the spectral states of black hole X-ray transients based on the diversity of accretion disk models is introduced. Depending on the mass accretion rate, it is proposed that the accretion disk is described by one or a combination of the following structures: optically thick disk, advection-dominated disk, corona-disk, and non-steady state disk. In particular, it is suggested that the very high, high, low, and off states are characterized by mass accretion rates of decreasing magnitude. The very high state corresponds to mass accretion rates near the Eddington limit in which an optically thin non steady inner region is surrounded by an optically thick structure. In the high state, the inner region is optically thin and advection-dominated or optically thick. The low hard state is interpreted in terms of a disk-corona system and the off state in terms of an optically thin disk dominated by advective energy transport into the black hole. The possible observational consequences of such a paradigm are discussed.Comment: ApJ, July 1996; 2 figures available upon reques
    • 

    corecore