4 research outputs found
LEAD : An Adaptive 3D-NoC Routing Algorithm with Queuing-Theory Based Analytical Verification
2D-NoCs have been the mainstream approach used to interconnect multi-core systems. 3D-NoCs have emerged to compensate for deficiencies of 2D-NoCs such as long latency and power overhead. A low-latency routing algorithm for 3D-NoC is designed to accommodate high-speed communication between cores. Both simulation and analytical models are applied to estimate the communication latency of NoCs. Generally, simulations are time-consuming and slow down the design process. Analytical models provide, within a fraction of the time, nearly accurate results which can be used by simulation to fine-tune the design. In this paper, a high performance and adaptive routing algorithm has been proposed for partially connected 3D-NoCs. Latency of the routing algorithm under different traffic patterns, different number of elevators and different elevator assignment mechanisms are reported. An analytical model, tailored to the adaptivity of the algorithm and under low traffic scenarios, has been developed and the results have been verified by simulation. According to the results, simulation and analytical results are consistent within a 10 percent margin.QC 20180807</p
A Resilient Routing Algorithm with Formal Reliability Analysis for Partially Connected 3D-NoCs
3D ICs can take advantage of a scalable communication platform, commonly referred to as the Networks-on-Chip (NoC). In the basic form of 3D-NoC, all routers are vertically connected. Partially connected 3D-NoC has emerged because of physical limitations of using vertical links. Routing is of great importance in such partially connected architectures. A high-performance, fault-tolerant and adaptive routing strategy with respect to the communication flow among the cores is crucial while freedom from livelock and deadlock has to be guaranteed. In this paper we introduce a new routing algorithm for partially connected 3D-NoCs. The routing algorithm is adaptive and tolerates the faults on vertical links as compared to the predesigned routing algorithms. Our results show a 40 - 50% improvement in the fraction of intact inter-level communications when the fault tolerant algorithm is used. This routing algorithm is lightweight and has only one virtual channel along the Y dimension.QC 20161219</p
The Effect of Sports and Physical Activity on Elderly Reaction Time and Response Time
Objectives: Physical activities ameliorate elderly motor and cognitive performance. The aim of this research is to study the effect of sport and physical activity on elderly reaction time and response time.
Methods & Materials: The research method is causal-comparative and its statistical population consists of 60 active and non-active old males over 60 years residing at Mahabad city. Reaction time was measured by reaction timer apparatus, made in Takei Company (YB1000 model). Response time was measured via Nelson’s Choice- Response Movement Test. At first, reaction time and then response time was measured. For data analysis, descriptive statistic, K-S Test and One Sample T Test were used Results K-S Test show that research data was parametric. According to the results of this research, physical activity affected reaction time and response time.
Results: of T test show that reaction time (P=0.000) and response time (P=0.000) of active group was statistically shorter than non- active group.
Conclusion: The result of current study demonstrate that sport and physical activity, decrease reaction and response time via psychomotor and physiological positive changes