5 research outputs found

    Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scientists and physicians have long noted similarities between the general behavior of a cancerous tumor and the physiological process of wound healing. But it may be during metastasis that the parallels between cancer and wound healing are most pronounced. And more particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation, may be heavily dependent on wound healing pathways for its further survival and proliferation.</p> <p>Discussion</p> <p>If cancer cells can hijack the wound healing process to facilitate their metastatic spread and survival, then the period immediately after surgery may be a particularly vulnerable period of time for the host, as wound healing pathways are activated and amplified after the primary tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering therapy during the perioperative period.</p> <p>Summary</p> <p>Waiting for wound healing to occur before initiating adjuvant therapies may be seriously compromising their effectiveness, and patients subsequently rendered incurable as a result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant therapies perioperatively are needed. These therapies should target not only the residual cancer cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.</p

    Cascading Norwegian co-streams for bioeconomic transition

    No full text
    A circular bioeconomy has become a global aspiration for governments in Europe and around the globe. This article pursues research questions concerning concrete innovations aiming to create bioeconomic transition options in Norway and presents results from a transdisciplinary investigation of Norwegian food industry cases involving processing of fish, meat, fruit, and vegetable co-streams aiming to capture or even increase use and value of residues from processing. It shows that while objectives of avoiding food losses and transforming co-streams to new products of higher value characterizes the poultry industry case and part of the ‘blue’ sector, challenges remain particularly in the ‘whitefish’ area where - also at the global level - a high share of fish resources ends as rest raw materials, i.e. not fully utilised. The investigation targeted strategic cases of innovations enabling alternative uses of co-streams: automation and scanning technologies for fractioning raw materials and co-streams into different qualities, a collection system for fish rest raw materials at sea, enzymatic hydrolysis, use of second grade vegetables for smoothies and potato peels for biodegradable plastics in the vegetable (potato) processing industries. The article shows how these innovations enable cascading and valorisation of co-streams and why an upcycling potential exists as well. Its main contribution is in demonstrating feasibility of transdisciplinary research and innovative options for bioeconomic transition towards sustainability
    corecore