16 research outputs found

    CHEMICALLY INDUCED MUTAGENESIS IN THE KING OYSTER MUSHROOM Pleurotus eryngii TO GENERATE HIGH-TEMPERATURE TOLERANT STRAIN

    Get PDF
    In this study, a high-temperature-tolerant strain of the king oyster mushroom (Pleurotus eryngii) was generated by chemical mutagenesis. Cultivation of P. eryngii generally involves incubating the mycelia at 25°C and then moving the spawns for further incubation at 18°C for fruitification. However, in tropical countries, the temperature is a major concern in the production of oyster mushroom where the average temperature is 32°C. In the current study, the mycelia were treated with ethyl methane sulphonate (EMS) or methyl methane sulphonate (MMS) for chemical-induced mutation. Seven mutants (EMS 1, 2, 6, 26, 35, 36, and 38) from EMS mutagenesis exhibited higher growth rates than the wild-type strain at 32°C. However, mutant strains from MMS mutagenesis showed a low growth rate when compared with wild-type. On sawdust substrate, the spawn running conditions for these strains were performed at 32°C, and fruitification occurred at 18°C. The yield and biological efficiency of EMS 36 and 38 mutants were higher than those of the wild-type strain. The activities of cellulase and xylanase of EMS 36 and 38 mutants showed that both these mutants had higher activities than the wild-type strain which may influence mushroom production. Therefore, these EMS 36 and 38 mutants can be cultivated in tropical countries, which could provide a high yield and reduce the cost during spawn running step

    Auswirkungen von Pektinzulagen auf Futtervertraeglichkeit und Verdaulichkeit der Naehrstoffe bei Legehennen, geprueft mit Hilfe von "Pair-Feeding-Versuchen"

    No full text
    Pektinzulagen (2, 4 und 6% hochverestertes Zitruspektin) foerderten die Wasseraufnahme, reduzierten mit zunehmender Zulage die Futteraufnahme. Die scheinbare Verdaulichkeit der Naehrstoffe, insbesondere Protein und Rohfett, war durch die Zulagen zunehmend beeintraechtigt. Die TS-Gehalte der Exkrete waren auffaellig vermindert, der pH-Wert war maessig erniedrigt. Der Gehalt an Cholesterin und Triglyzeriden war durch Pektinzulagen erniedrigt. Verschiebungen im Besatz der Mikroflora des Magen-Darm-Traktes. Dem Pektin konnte keine positive Energiewirkung zugeordnet werden. Auftreten von Erscheinungen einer Enteritis am DarmAvailable from: Goettingen Univ. (Germany, F.R.). Universitaetsbibliothek / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Identification of a putative keratinase gene and analysis of a peptidase S8 Family in a hyperthermophilic, Fervidobacterium sp. Strain FC2004 in Thailand

    No full text
    13 páginas.-- 6 figuras.-- referencias.-- Ponencia presentada en el The 28 Annua! Meeting of the Thai Society for Biotechno!ogy and Intemational Conference, 28th to 30th November, 2016 in Chiang Mai, ThailandA hyperthermophilic Fervidobacterium sp. strain FC2004 was previously isolated from a hot spring in Thailand. A putative gene encoding a proenzyme named in this study ¿ProA1¿ was identified from shotgun sequencing of genomic DNA of the strain FC2004. Predicted 3D-molecule contains a non-homologous signal peptide, a propeptide domain (PD), a catalytic domain (CD) with the typical catalytic triad residues of D169, H207 and S379, and a substrate binding domain (SD). Unlike fervidolysin and islandisin, the ProA1 completely lacks the SD2 domain. Phylogenetic analysis suggests that the ProA1 might be an intermediate isoform between high molecular weight and low molecular weight peptidase S8_subtilases. Although, the strain FC2004 is able to degrade pieces of native feather at high temperature, whether or not the mature ProA1 is active on keratin, the SD plays a role in hydrolyzing keratin substrate and the strain FC2004 might carry a second serine protease with two SDs remains to be investigated.This work was supported by the following grants: The Scientific Promotion and Development Fund, Faculty of Science, Silpakorn University (SFR-SRG-2558-01) and the Silpakorn University Research and Development Institution from Thailand; and the Ministry of Economy and Productivity (Consolider CSD2009-00006) and the Andalusian Government (BIO288) from Spain with participation of FEDER funds.Peer Reviewe

    Development of Smart Bilayer Alginate/Agar Film Containing Anthocyanin and Catechin‑Lysozyme

    No full text
    International audienceSmart packaging can provide real-time information about changes in food quality and impart a protective effect to the food product by using active agents. This study aimed to develop a smart bilayer film (alginate/agar) with a cellulose nanosphere (CNs) from corncob. The bilayer films were prepared using 1.5% (w/w) sodium alginate with 0.25%% (w/v) butterfly pea extract incorporated (indicator layer) and 2% (w/w) agar containing 0.5% (w/v) catechin–lysozyme (ratio 1:1) (active layer). The CNs were incorporated into the alginate layer at different concentrations (0, 5, 10, 20, and 30% w/w-based film) in order to improve the film’s properties. The thickness of smart bilayer film dramatically increased with the increase of CNs concentration. The inclusion of CNs reduced the transparency and elongation at break of the smart bilayer film while increasing its tensile strength (p 0.05). The smart bilayer film displayed a blue film with a glossy (without CNs) or matte surface (with CNs). The developed bilayer film shows excellent pH sensitivity, changing color at a wide range of pHs, and has a good response to ammonia and acetic acid gases. The film possesses exceptional antimicrobial and antioxidant activities. The integration of CNs did not influence the antibacterial activity of the film, despite the presence of a higher level of DPPH in film containing CNs. The smart bilayer film was effectively used to monitor shrimp freshness. These findings imply that smart bilayer films with and without CNs facilitate food safety and increase food shelf life by monitoring food quality

    Development of Intelligent Gelatin Films Incorporated with Sappan (Caesalpinia sappan L.) Heartwood Extract

    No full text
    International audienceThis study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 μm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1–12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films’ solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 μM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities

    Green Tea Extract Enrichment: Mechanical and Physicochemical Properties Improvement of Rice Starch-Pectin Composite Film

    No full text
    The effects of green tea extract (GTE) at varying concentrations (0.000, 0.125, 0.250, 0.500, and 1.000%, w/v) on the properties of rice-starch-pectin (RS-P) blend films were investigated. The results showed that GTE addition enhanced (p &lt; 0.05) the antioxidation properties (i.e., total phenolic content, DPPH radical scavenging activity, and ferric reducing antioxidant power) and thickness of the RS-P composite film. The darker appearance of the RS-T-GTE blend films was obtained in correspondence to the lower L* values. However, the a* and b* values were higher toward red and yellow as GTE increased. Though GTE did not significantly alter the film solubility, the moisture content and the water vapor permeability (WVP) of the resulting films were reduced. In addition, the GTE enrichment diminished the light transmission in the UV-Visible region (200&ndash;800 nm) and the transparency of the developed films. The inclusion of GTE also significantly (p &lt; 0.05) lowered the tensile strength (TS) and elongation at break (EAB) of the developed film. The FT-IR spectra revealed the interactions between RS-P films and GTE with no changes in functional groups. The antimicrobial activity against Staphylococcus aureus (TISTR 764) was observed in the RS-P biocomposite film with 1% (w/v) GTE. These results suggested that the RS-P-GTE composite film has considerable potential for application as active food packaging

    Isolation and Characterization Cellulose Nanosphere from Different Agricultural By-Products

    No full text
    International audienceCellulose nanospheres (CN) have been considered a leading type of nanomaterial that can be applied as a strengthening material in the production of nanocomposites. This work aimed to isolate and characterize the properties of CN from different agricultural by-products. CNs were successfully isolated from rice straw, corncob, Phulae pineapple leaf and peel using acid hydrolysis (60% H2SO4) combined with homogenization-sonication (homogenized at 12,000 rpm for 6 min and ultrasonicated for 10 min). The results showed that the CN from rice straw (RS-CN) and corncob (CC-CN) exhibited high yields (22.27 and 22.36%) (p < 0.05). All hydrolyzed CNs exhibited a spherical shape with a diameter range of 2 to 127 nm. After acid hydrolysis, Fourier transform infrared (FTIR) results showed no impurities. X-ray diffraction (XRD) showed that the structure of cellulose was changed from cellulose-I to cellulose-II. However, cellulose-I remained in pineapple peel cellulose nanosphere (PP-CN). The crystalline index (CI) ranged from 43.98 to 73.58%, with the highest CI obtained in the CC-CN. The CN from all sources presented excellent thermal stability (above 300 °C). The functional properties, including water absorption Index (WAI), water solubility index (WSI) and swelling capacity were investigated. PP-CN showed the highest WAI and swelling capacity, while the PL-CN had the highest WSI (p < 0.05). Among all samples, CC-CN showed the highest extraction yield, small particle size, high CI, and desirable functional properties to be used as a material for bio-nanocomposites film

    Dragon Fruit Peel Extract Enriched-Biocomposite Wrapping Film: Characterization and Application on Coconut Milk Candy

    No full text
    Bio-based film is an eco-friendly alternative to petroleum-based packaging film. The effects of biocomposite wrapping film enhanced with dragon fruit peel extract (0, 2% w/v, respectively) and currently used commercial packaging film (polypropylene; PP) on coconut milk caramels during storage (30 °C, 75% RH, nine days) were studied. Both 0% and 2% DPE-enriched biocomposite films were thicker and had higher water vapor permeability and solubility than the PP film but poorer mechanical characteristics. In addition, the 2% film possessed antioxidants and antioxidant ability. A FESEM micrograph revealed the rough surface and porous path of the biocomposite films. Over the storage time, the moisture content, water activity, and springiness of the coconut milk caramel candy wrapped in the PP and all DPE-enriched biocomposite films were not significantly altered. However, the lipid oxidation as the thiobarbituric acid reactive substance (TBARS) and hardness of all coconut caramels were significantly (p < 0.05) increased during storage. Furthermore, the hardness of coconut candy covered in the control (0% DPE) biocomposite film was more pronounced on day nine of storage. However, the changes in quality characteristics of the coconut candy wrapped in each film type need to be better established. The investigating factors influencing the quality deterioration of coconut milk candy should be further identified to mitigate their effects and extend the shelf-life of the coconut candy

    Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand

    No full text
    International audienceCellulose is an abundant component of the plant biomass in agricultural waste valorization that may be exploited to mitigate the excessive use of synthetic non-biodegradable materials. This work aimed to investigate the cellulose utilized by alkaline extraction with a prior bleaching process from rice straw, corncob, Phulae pineapple leaves, and Phulae pineapple peels. The bleaching and alkaline extraction process was performed using 1.4% acidified sodium chlorite (NaClO2) and 5% potassium hydroxide (KOH) in all the samples. All the samples, without and with the alkaline process, were characterized for their physico-chemical, microstructure, thermal properties and compared to commercial cellulose (COM-C). The extraction yield was the highest in alkaline-extracted cellulose from the corncob (AE-CCC) sample (p < 0.05), compared to the other alkaline-treated samples. The undesired components, including mineral, lignin, and hemicellulose, were lowest in the AE-CCC sample (p < 0.05), compared to raw and alkaline-treated samples. The microstructure displayed the flaky AE-CCC structure that showed a similar visibility in terms of morphology with that of the alkaline-treated pineapple peel cellulose (AE-PPC) and COM-C samples compared to other alkaline-treated samples with a fibrous structure. Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) of AE-CCC samples showed the lowest amorphous regions, possibly due to the elimination of hemicellulose and lignin during bleaching and alkaline treatment. The highest crystallinity index obtained in the AE-CCC sample showed a close resemblance with the COM-C sample. Additionally, the AE-CCC sample showed the highest thermal stability, as evidenced by its higher Tonset (334.64 °C), and Tmax (364.67 °C) compared to the COM-C and alkaline-treated samples. Therefore, agricultural wastes after harvesting in the Chiang Rai province of Thailand may be subjected to an alkaline process with a prior bleaching process to yield a higher cellulose content that is free of impurities. Thus, the extracted cellulose could be used as an efficient, eco-friendly, and biodegradable material for packaging applications
    corecore