34,311 research outputs found

    Simple Non-Markovian Microscopic Models for the Depolarizing Channel of a Single Qubit

    Full text link
    The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.Comment: 13 pages, 2 figures. Title corrected. Paper rewritten. Added references. Some typos and errors corrected. Author adde

    Quantum transport through single and multilayer icosahedral fullerenes

    Get PDF
    We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into account the curvature and finite size of the fullerenes layers as well as the strength of the intershell interactions depending on to the number of interacting atom pairs belonging to adjacent shells. Misalignment of the symmetry axes of the concentric icosahedral shells produces breaking of the level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead of the localized discrete peaks of the individual fullerenes. As a result, the transmission function for non symmetrical onions are rapidly varying functions of the Fermi energy. Furthermore, we found that most of the features of the transmission through the onions are due to the electronic structure of the outer shell with additional Fano-like antiresonances arising from coupling with or between the inner shells.Comment: 16 pages, 5 figur

    Gamma-ray absorption in the microquasar SS433

    Get PDF
    We discuss the gamma-ray absorption in the inner region of the microquasar SS433. Our investigation includes several contributions to the opacity of this system. They result from the ambient fields generated by the primary star, possibly an A-type supergiant, and a very extended disk around the black hole. Besides the sharp and dramatic absorption effect that occurs every time the star crosses the emission zone, we find in the UV photon field from the extended disk an important source of absorption for very high energy gamma-rays. This results in periodic gamma-ray observational signatures.Comment: 8 pages, 9 figures, to appear in Astropart.Phy

    Modeling the thermal evolution of enzyme-created bubbles in DNA

    Full text link
    The formation of bubbles in nucleic acids (NAs) are fundamental in many biological processes such as DNA replication, recombination, telomeres formation, nucleotide excision repair, as well as RNA transcription and splicing. These precesses are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach we model the structure of the DNA duplex by a nonlinear network of coupled oscillators. We show that in fact from certain local structural distortions there originate oscillating localized patterns, that is radial and torsional breathers, which are associated with localized H-bond deformations, being reminiscent of the replication bubble. We further study the temperature dependence of these oscillating bubbles. To this aim the underlying nonlinear oscillator network of the DNA duplex is brought in contact with a heat bath using the Noseˊ\rm{\acute{e}}-Hoover-method. Special attention is paid to the stability of the oscillating bubbles under the imposed thermal perturbations. It is demonstrated that the radial and torsional breathers, sustain the impact of thermal perturbations even at temperatures as high as room temperature. Generally, for nonzero temperature the H-bond breathers move coherently along the double chain whereas at T=0 standing radial and torsional breathers result.Comment: 19 pages, 7 figure

    Renormalisation group determination of the order of the DNA denaturation transition

    Get PDF
    We report on the nature of the thermal denaturation transition of homogeneous DNA as determined from a renormalisation group analysis of the Peyrard-Bishop-Dauxois model. Our approach is based on an analogy with the phenomenon of critical wetting that goes further than previous qualitative comparisons, and shows that the transition is continuous for the average base-pair separation. However, since the range of universal critical behaviour appears to be very narrow, numerically observed denaturation transitions may look first-order, as it has been reported in the literature.Comment: 6 pages; no figures; to appear in Europhysics Letter

    The soft X-ray excess AGN RE J2248-511

    Full text link
    We model the spectral energy distribution of the ultrasoft broad-line AGN RE J2248-511 with Comptonised accretion disc models. These are able to reproduce the steep optical and ultrasoft X-ray slopes, and the derived black hole mass is consistent with independent mass estimates. This AGN displays properties of both broad and narrow line Seyfert 1 galaxies, but we conclude that it is intrinsically a `normal' Seyfert 1 viewed at high inclination angle.Comment: 4 pages, 1 figure. MG10 Proceeding
    corecore