58 research outputs found

    Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations.

    Get PDF
    OBJECTIVE: To report the ESICM consensus and clinical practice recommendations on fluid therapy in neurointensive care patients. DESIGN: A consensus committee comprising 22 international experts met in October 2016 during ESICM LIVES2016. Teleconferences and electronic-based discussions between the members of the committee subsequently served to discuss and develop the consensus process. METHODS: Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles generated. The consensus focused on three main topics: (1) general fluid resuscitation and maintenance in neurointensive care patients, (2) hyperosmolar fluids for intracranial pressure control, (3) fluid management in delayed cerebral ischemia after subarachnoid haemorrhage. After an extensive literature search, the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system were applied to assess the quality of evidence (from high to very low), to formulate treatment recommendations as strong or weak, and to issue best practice statements when applicable. A modified Delphi process based on the integration of evidence provided by the literature and expert opinions-using a sequential approach to avoid biases and misinterpretations-was used to generate the final consensus statement. RESULTS: The final consensus comprises a total of 32 statements, including 13 strong recommendations and 17 weak recommendations. No recommendations were provided for two statements. CONCLUSIONS: We present a consensus statement and clinical practice recommendations on fluid therapy for neurointensive care patients

    Hypothermia and brain inflammation after cardiac arrest

    No full text
    The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology of ischemia-reperfusion brain injury with emphasis on the role of inflammatory mechanisms is reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also discussed. Further studies are needed to delineate the complex pathophysiology and interactions among different components of immune response after CA and identify appropriate targets for clinical investigations

    Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury

    No full text
    Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA

    Effect of acute hypoxic preconditioning on qEEG and functional recovery after cardiac arrest in rats.

    No full text
    Acute hypoxic preconditioning (AHPC) can confer neuroprotection from global cerebral ischemia such as cardiac arrest. We hypothesize that acute neuroprotection by AHPC will be detected early by quantitative EEG (qEEG) entropy analysis after asphyxial cardiac arrest (aCA). Cerebral ischemia lowers EEG signal randomness leading to low entropy. A qEEG entropy index defined as the duration when the entropy measure is 15% below uninjured baseline entropy is used as a measure of injury. We compared 3 groups of adult Wistar rats: (1) untreated controls that were subjected to 5 min of aCA and were resuscitated (n = 5); (2) AHPC-treated group with 10% FI O2 for 30 min, then 25 min of room air, 5 min of aCA followed by resuscitation (n = 5); and (3) a surgical sham group (no aCA) (n = 3). Functional outcome was assessed by neurodeficit score (NDS) which consisted of level of consciousness, cranial nerve, motor-sensory function, and simple behavioral tests (best = 100 and brain dead = 0). We found that increasing entropy index of injury at 0-5 h from return of spontaneous circulation (ROSC) is associated with worsening NDS at 24 h (linear regression: r = 0.81, P \u3c 0.001). The NDS of the group sham (84.7 +/- 2.8) (mean +/- SEM) and AHPC group (84.6 +/- 2.9, P \u3e 0.05) was better than control injury group (52.2 +/- 8.4, P \u3c 0.05) (ANOVA with Tukey test). We therefore conclude that AHPC confers acute neuroprotection at 24 h, which was detected by qEEG entropy during the first 5 h after injury
    corecore