16 research outputs found
Organic nitrate aerosol formation via NO³ + biogenic volatile organic compounds in the southeastern United States
Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO₃) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO₃ to terpenes are correlated with increase in gasand aerosol-organic nitrate concentrations made during the campaign. Correlation of NO₃ radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C₁₀H₁₇NO₅, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C₅H₉NO₅ was observed to contribute less than 1% of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45% of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO₃ uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO₃ CBVOCs
CRISPR-screen identifies ZIP9 and dysregulated Zn2+ homeostasis as a cause of cancer-associated changes in glycosylation
IntroductionIn epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear.MethodsTo identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn.Results and ConclusionsWe show that knockout of the Zn2+-transporter SLC39A9 (ZIP9), alongside the well-described targets C1GALT1 (C1GalT1) and its molecular chaperone, C1GALT1C1 (COSMC), results in surface-expression of cancer-associated O-glycans. No other gene perturbations were found to reliably induce O-glycan truncation. We furthermore show that ZIP9 knockout affects N-linked glycosylation, resulting in upregulation of oligo-mannose, hybrid-type, and α2,6-sialylated structures as well as downregulation of tri- and tetra-antennary structures. Finally, we demonstrate that accumulation of Zn2+ in the secretory pathway coincides with cell-surface presentation of truncated O-glycans in cancer tissue, and that over-expression of COSMC mitigates such changes. Collectively, the findings show that dysregulation of ZIP9 and Zn2+ induces cancer-like glycosylation on the cell surface by affecting the glycosylation machinery.Proteomic
Organic nitrate aerosol formation via NO3+ biogenic volatile organic compounds in the southeastern United States
Gas-and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas-and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs