8,764 research outputs found

    Non-stationary resonance dynamics of weakly coupled pendula

    Full text link
    In this paper we fill the gap in understanding the non-stationary resonance dynamics of the weakly coupled pendula model, having significant applications in numerous fields of physics such as super- conducting Josephson junctions, Bose-Einstein condensates, DNA, etc.. While common knowledge of the problem is based on two alternative limiting asymptotics, namely the quasi-linear approach and the approximation of independent pendula, we present a unified description in the framework of new concept of Limiting Phase Trajectories (LPT), without any restriction on the amplitudes of oscillation. As a result the conditions of intense energy exchange between the pendula and transition to energy localization are revealed in all possible diapason of initial conditions. By doing so, the roots and the domain of chaotic behavior are clarified as they are associated with this transition while simultaneously approaching the pendulum separatrix. The analytical findings are corrobo- rated by numerical simulations. By considering the simplest case of two weakly coupled pendula, we pave the ground for new opening possibilities of significant extensions in both fundamental and applied directions.Comment: 7 pages, 7 figure

    Zero-conductance resonances and spin-filtering effects in ring conductors subject to Rashba coupling

    Full text link
    We investigate the effect of Rashba spin-orbit coupling and of a tunnel barrier on the zero conduc- tance resonances appearing in a one-dimensional conducting Aharonov-Bohm (AB) ring symmet- rically coupled to two leads. The transmission function of the corresponding one-electron problem is derived within the scattering matrix approach and analyzed in the complex energy plane with focus on the role of the tunnel barrier strength on the zero-pole structure characteristic of trans- mission (anti)resonances. The lifting of the real conductance zeros is related to the breaking of the spin-reversal symmetry and time-reversal symmetry of Aharonov-Casher (AC)and AB rings, as well as to rotational symmetry breaking in presence of a tunnel barrier. We show that the polarization direction of transmitted electrons can be controlled via the tunnel barrier strength and discuss a novel spin-filtering design in one-dimensional rings with tunable spin-orbit interaction.Comment: 13 pages, 8 figure

    Persistent spin and charge currents and magnification effects in open ring conductors subject to Rashba coupling

    Full text link
    We analyze the effect of Rashba spin-orbit coupling and of a local tunnel barrier on the persistent spin and charge currents in a one-dimensional conducting Aharonov-Bohm (AB) ring symmetrically coupled to two leads. First, as an important consequence of the spin-splitting, it is found that a persistent spin current can be induced which is not simply proportional to the charge current. Second, a magnification effect of the persistent spin current is shown when one tunes the Fermi energy near the Fano-type antiresonances of the total transmission coefficient governed by the tunnel barrier strength. As an unambiguous signature of spin-orbit coupling we also show the possibility to produce a persistent pure spin current at the interference zeros of the transmittance. This widens the possibilities of employing mesoscopic conducting rings in phase-coherent spintronics applications.Comment: 6 pages, 5 figures, to appear in PR

    Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    Get PDF
    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions

    Arbres magnífics (4)

    Get PDF

    The impact of stellar feedback on the density and velocity structure of the interstellar medium

    Get PDF
    We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out 4.6\sim 4.6pc resolution NN-body+adaptive mesh refinement (AMR) hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way (MW), and a Large and Small Magellanic Cloud (LMC, SMC). We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed HI in local spiral galaxies from THINGS (The HI Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS HI density power spectra. We find that kinetic energy power spectra in feedback regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with super-sonic turbulence (E(k)k2E(k)\propto k^{-2}) on scales below the thickness of the HI layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.Comment: 19 pages, 13 figures, 2 tables, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore