95 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells

    Get PDF
    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones 3a-h and 4a-d were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the N-1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC50values. The antiproliferative activities of 3-pyridinyl derivatives 3f-h revealed that N-benzyl indole analogues generally exhibited lower activity compared to N-H or N-alkyl derivatives 3a-b and 3c-e, respectively. Moreover, cellular mechanism studies elucidated that compound 4a induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner

    Synthesis and biological evaluation of 2-(3 ',4 ',5 '-trimethoxybenzoyl)-3-aryl/arylaminobenzo[b]thiophene derivatives as a novel class of antiproliferative agents

    No full text
    The biological importance of microtubules in mitosis, as well as in interphase, makes them an interesting target for the development of anticancer agents. Small molecules such as benzo[b]thiophenes are attractive as inhibitors of tubulin polymerization. Thus, a new class of compounds that incorporated the structural motif of the 2-(3',4',5'-trimethoxybenzoyl)-3-aryl/arylamino benzo[b]thiophene molecular skeleton, with electron-donating (Me, OMe, SMe or OEt) or electron-withdrawing (F and Cl) substituents on the B-ring, was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. The most promising compound in this series was 2-(3',4',5'-trimethoxybenzoyl)-3-(4'-ethoxyphenyl)-benzo[b]thiophene (4e), which significantly inhibited cancer cell growth at submicromolar concentrations, especially against HeLa and Jurkat cells, and interacted with tubulin. As determined by flow cytometric analysis, 4e caused G2/M phase arrest and apoptosis in a time- and concentration-dependent manner. The block in G2/M was correlated with increased expression of cyclin B1 and phosphorylation of cdc25c. Moreover, 4e perturbed mitochondrial membrane potential and caused activation of caspase-3 and cleavage of poly(ADP-rybose)polymerase (PARP), events that are involved in 4e-induced apoptosis

    Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study

    Get PDF
    The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity

    Microwave-assisted synthesis of substituted 2,4-diarylthiazoles and their evaluation as anticancer agents

    No full text
    The microwave-promoted cyclization method has been used for the synthesis of a series of novel substituted 2,4-diarylthiazoles from -halo ketones and thioamides using ethanol as solvent. This rapid method produces compds. in good yield within one minute in comparison with conventional heating method. The synthesized mols. have been evaluated for their antiproliferative effects against five different cancer cell lines

    Symmetrical alpha-bromoacryloylamido diaryldienone derivatives as a novel series of antiproliferative agents. Design, synthesis and biological evaluation.

    No full text
    none9In a continuing study of hybrid compounds containing the alpha-bromoacryloyl moiety as potential anticancer drugs, we synthesized a novel series of hybrids 4a-h, in which this moiety was linked to a 1,5-diaryl-1,4-pentadien-3-one system. Many of the conjugates prepared (4b, 4c, 4e and 4g) demonstrated pronounced, submicromolar antiproliferative activity against four cancer cell lines. Moreover, compound 4b induced apoptosis through the mitochondrial pathway and activated caspase-3 in a concentration-dependent manner.noneROMAGNOLI R; BARALDI PG; CRUZ-LOPEZ O; LOPEZ CARA C; CARRION MD; BALZARINI J; HAMEL E; BASSO G; BORTOLOZZI R.; VIOLA GRomagnoli, R; Baraldi, Pg; CRUZ LOPEZ, O; LOPEZ CARA, C; Carrion, Md; Balzarini, J; Hamel, E; Basso, Giuseppe; Bortolozzi, R.; Viola, G
    corecore