15,761 research outputs found

    Time Evolution of Non-Lethal Infectious Diseases: A Semi-Continuous Approach

    Full text link
    A model describing the dynamics related to the spreading of non-lethal infectious diseases in a fixed-size population is proposed. The model consists of a non-linear delay-differential equation describing the time evolution of the increment in the number of infectious individuals and depends upon a limited number of parameters. Predictions are in good qualitative agreement with data on influenza.Comment: 21 page

    Impurity effects on Fabry-Perot physics of ballistic carbon nanotubes

    Full text link
    We present a theoretical model accounting for the anomalous Fabry-Perot pattern observed in the ballistic conductance of a single-wall carbon nanotubes. Using the scattering field theory, it is shown that the presence of a limited number of impurities along the nanotube can be identified by a measurement of the conductance and their position determined. Impurities can be made active or silent depending on the interaction with the substrate via the back-gate. The conceptual steps for designing a bio-molecules detector are briefly discussed.Comment: 4 pages, 4 figure

    ASSESSING THE FINANCIAL RISKS OF DIVERSIFIED COFFEE PRODUCTION SYSTEMS: AN ALTERNATIVE NONNORMAL CDF ESTIMATION APPROACH

    Get PDF
    Recently developed techniques are adapted and combined for the modeling and simulation of crop yields and prices that can be mutually correlated, exhibit heteroskedasticity or autocorrelation, and follow nonnormal probability density functions. The techniques are applied to the modeling and simulation of probability distribution functions for the returns of three tropical agroforestry systems for coffee production. The importance of using distribution functions that can more closely reflect the statistical behavior of yields and prices for risk analysis is discussed and illustrated.Risk and Uncertainty,

    Quantum pumping in deformable quantum dots

    Full text link
    The charge current pumped adiabatically through a deformable quantum dot is studied within the Green's function approach. Differently from the non-deformable case, the current shows an undefined parity with respect to the pumping phase \phi. The unconventional current-phase relation, analyzed in the weak pumping regime, is due to a dynamical phase shift \phi_D caused by the elastic deformations of the central region (classical phonons). The role of the quality factor Q of the oscillator, the effects induced by a mechanical resonance and the implications for current experiments on molecular systems are also discussed

    Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    Get PDF
    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions

    N-body simulations with two-orders-of-magnitude higher performance using wavelets

    Get PDF
    Noise is a problem of major concern for N-body simulations of structure formation in the early Universe, of galaxies and plasmas. Here for the first time we use wavelets to remove noise from N-body simulations of disc galaxies, and show that they become equivalent to simulations with two orders of magnitude more particles. We expect a comparable improvement in performance for cosmological and plasma simulations. Our wavelet code will be described in a following paper, and will then be available on request.Comment: Mon. Not. R. Astron. Soc., in press. The interested reader is strongly recommended to ignore the low-resolution Fig. 3 (and Fig. 4), and to download the full-resolution paper (700 kb) from http://www.oso.chalmers.se/~romeo/Paper_VI.ps.g
    • …
    corecore