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The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to

a lightweight mass by means of a spring with both cubic nonlinear and negative linear components

is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator,

excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped

systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well

oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynam-

ics evolves solely in-well. The description of the former dissipative phenomenon is provided in a

two-dimensional projection of the phase space, where transitions between in-well and cross-well

oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the sec-

ond mechanism is described in terms of secondary limiting phase trajectories of the nonlinear

attachment under certain resonance conditions. The analytical treatment of the two aformentioned

low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent

analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully

validate our analytical predictions. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921193]

A system consisting of a grounded linear oscillator (LO)

with a strongly nonlinear ungrounded attachment pos-

sessing a stiffness with combined negative linear and

cubic nonlinear terms is considered. This type of nonlin-

ear attachment is capable of absorbing passively the

energy initially induced in the linear oscillator over a

broad range of input energy. Accordingly, this configura-

tion overcomes the limitations of the pure cubic nonlinear

attachment for which a well-defined threshold of input

energy exists below which no significant energy absorp-

tion and dissipation can be achieved. The mechanisms

leading to intense energy exchanges between the linear

oscillator, excited by a low-energy impulse, and the non-

linear attachment are addressed. The proposed

approaches describe and predict the beneficial dynamic

phenomena governing the targeted energy transfer from

the linear oscillator to the nonlinear attachment, thus

providing valuable tools to design efficient passive energy

absorption devices for low amplitude ambient vibrations.

I. INTRODUCTION

A system consisting of a grounded linear oscillator with

a strongly nonlinear ungrounded attachment possessing a

stiffness with combined negative linear and cubic nonlinear

terms is considered (Figure 1). As recently shown in Refs. 1

and 2, this type of nonlinear attachment is capable of absorb-

ing passively the energy initially induced in the linear

oscillator over a broad range of input energy. Accordingly,

this configuration overcomes the limitations of the pure

cubic nonlinear attachment for which a well-defined thresh-

old of input energy exists below which no significant energy

absorption and dissipation can be achieved.3

Whereas many works have considered the nonlinear dy-

namics of systems possessing bistable elements4–10 or nega-

tive stifffness,11–16 the combined effects of both such types of

stiffness characteristics have only recently been explored.1,2

On the other hand, the capacity to build nonlinear springs

with complex stiffness characteristics (e.g., negative and non-

linear force-displacement laws) has been demonstrated in

Ref. 17, paving the way of utilizing such complex nonlinear

springs in practical designs of mechanical components.

In Refs. 1 and 2, an impulsively forced linear oscillator

coupled to a (non-directly forced) lightweight attachment by

means of a complex spring combining negative linear and

hardening cubic stiffness characteristics was considered and

FIG. 1. The model consisting of a linear oscillator of mass m1 coupled to a

lightweight attachment m2 through a buckled beam, with negative linear (k2)

and cubic nonlinear (k3) stiffness coefficients.

a)Author to whom correspondence should be addressed. Electronic mail:

francesco.romeo@uniroma1.it.
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nonlinear targeted energy transfers from the linear oscillator

to the nonlinear attachment were analytically and numeri-

cally studied. According to the intensity of the input energy

applied to the LO, different mechanisms explain the passive

energy absorption by the nonlinear attachment (termed from

now on as nonlinear energy sink—NES). In particular, as

shown in Ref. 2, for high input energy, similar to the pure

cubic NES configuration, the transient 1:1 resonant capture

is the leading mechanism for energy transfer from the LO to

the NES, and high amplitude periodic oscillations of the

NES occur; whereas as the input energy decreases to inter-

mediate values, nonlinear beats provide the most efficient

energy transfer mechanism in that case. For both high and in-

termediate energy regimes, however, the nonlinearity gener-

ated by the pure cubic stiffness of the NES dominates over

the negative stiffness effects. This changes, however, at low

energy inputs. Indeed, at low input excitations, the bistability

of the NES triggers interesting transient dynamics evolving

around the two potential wells of the dynamics of the system,

where aperiodic cross-well oscillations represent the most

beneficial energy transfer mechanism. Furthermore, in-well

nonlinear beats can be also observed at very low energy lev-

els during the later stages of the transient dynamics.

The bistable NES considered herein possesses two non-

trivial stable equilibria and one trivial unstable equilibrium;

moreover, its phase-plane is divided in two regions and its

transient dynamics is characterised by in-well as well as

cross-well oscillations, depending on which region is visited

by the orbits of the system. We will show in this work that

when a low energy input is applied to the LO, these bistabil-

ity features affect significantly the transient dynamics of the

entire coupled system.

In particular, we aim to describe in detail the nonlinear

targeted energy transfer mechanisms occurring at low energy

in this system and provide predictive design capacity which

will be based on the understanding and analysis of the critical

nonlinear dynamics that govern these low-energy transfers.

The present work is organised as follows. In Sec. II, the main

energy transfer mechanisms and their performance in terms

of rate of energy dissipated by the NES are summarized and

discussed. In Sec. III, the influence of the negative stiffness

on broadening the NES response spectrum for low input

energy is highlighted and the pseudo-separatrix concept is

introduced in anticipation of the order reduction carried out

in Sec. IV. Next, in Sec. IV, the reduction of the system dy-

namics to a single degree of freedom (SDOF) reduced-order

system is introduced aiming to analyze the low-energy cha-

otic transitions by means of Melnikov analysis and Lyapunov

characteristic exponents. In Sec. V, the in-well nonlinear

beats occurring at very low energy levels are described as

secondary Limiting Phase Trajectories (LPTs). Finally, some

concluding remarks pointing toward future experimental

investigations are reported in the last section.

II. MAIN ENERGY TRANSFER MECHANISMS

The system under investigation consists of a linear pri-

mary oscillator of mass m1 (the LO) and viscous damping

coefficient c1 that is coupled to a lightweight mass m2 (the

nonlinear attachment, bistable NES), with viscous damping

coefficient c2, by means of negative linear (k2) and cubic

nonlinear (k3) springs in parallel. The mechanical design cor-

responding to the considered bistable NES model can be

realized in different ways. The simplest one is sketched in

Figure 1, where a buckled beam with a midspan point mass

is rigidly coupled to the primary linear oscillator. The level

of pre-compression in the added beam, the straight configu-

ration of which is unstable, governs the relationship between

positive cubic and negative linear stiffness components. The

equations of motion of this two-DOF system are given by

m1€x þ k1xþ c1 _x þ k2ðx� vÞ þ c2ð _x � _vÞ þ k3ðx� vÞ3 ¼ 0;

m2€v þ k2ðv� xÞ þ c2ð _v � _xÞ þ k3ðv� xÞ3 ¼ 0: (1)

Being interested in the transient dynamics, the system (1) is

studied under the following initial conditions at t¼ 0,

x ¼ v ¼ 0; _x ¼ X > 0; _v ¼ 0. By setting

e ¼ m2

m1

; x2
0 ¼

k1

m1

; C0 ¼
k2

m1

; C ¼ k3

m1

;

k1 ¼
c1

m1

; k2 ¼
c2

m1

; (2)

and introducing the change of variables

v ¼ zþ d d ¼

ffiffiffiffiffiffiffiffiffiffi����C0

C

����
s

; (3)

the equations of motion (2) can be rewritten in normalized

form as

€x þ x2
0xþ ðC0 þ 3Cd2Þðx� zÞ þ C½ðx� zÞ3 � 3dðx� zÞ2�

þ k1xþ k2ð _x � _zÞ ¼ 0; e€z þ ðC0 þ 3Cd2Þðz� xÞ
þC½ðz� xÞ3 þ 3dðz� xÞ2� þ k2ð _z � _xÞ ¼ 0: (4)

As shown in Refs. 1 and 2, three energy regions with different

main energy transfer mechanisms exist based on the

frequency-energy plot of the underlying Hamiltonian system.

The main backbone branches (composed of periodic solutions

under condition of 1:1 resonance of the underlying system

without damping or forcing) showed that the negative stiffness

affects the width of the energy interval corresponding to inten-

sive energy transfer from the LO to the NES. In particular, the

latter favorable regime is due to nonlinear beats and arises

within the region of existence of out-of-phase unstable oscilla-

tions in 1:1 resonance. This intermediate energy interval, the

boundaries of which having been analytically identified,2 lies

between the low and high energy regimes where different tar-

geted energy transfer mechanisms from the directly forced LO

to the NES arise. In order to track these different NES absorp-

tion mechanisms, the time evolution of the energy dissipated

by the nonlinear attachment is computed by means of the

energy dissipation measure ENESðtÞ, defined as

ENES tð Þ ¼
k2

ðt

0

_z sð Þ � _x sð Þ½ �2 ds

X2=2ð Þ � 100: (5)

053109-2 Romeo et al. Chaos 25, 053109 (2015)
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As shown by the expression (5), the measure ENESðtÞ is nor-

malised with respect to the initially imparted input energy.

In Figure 2, results obtained when the primary oscillator

of the lightly damped system is impulsively excited at inter-

mediate (a) and high (b) energy levels are reported. The

response of the system is shown in terms of NES (red) and

LO (blue) displacement time-histories. These two regimes

were analytically addressed and interpreted in Ref. 1 and are

here summarized for the sake of completeness. In particular,

case (a) was tackled through an asymptotic analytical

approach showing that the energetic regime of intensive

energy transfer from the LO to the NES is effectively

described in terms of LPTs. These are special periodic orbits

of the underlying Hamiltonian system corresponding to max-

imum energy exchange (in the form of nonlinear periodic

beats) between the LO and the NES. The solutions corre-

sponding to case (b), albeit not directly shown in Ref. 1, cor-

responded to stationary states in an appropriately defined

reduced phase plane and are nonlinear normal modes

(NNMs) where the amplitude of the oscillation of the NES

was twice that of the linear oscillator. Below each time-

history shown in Figure 2, the associated measures of

ENESðtÞ are also depicted together with the evolution of the

potential, kinetic, and dissipated energy components of the

LO and the NES. Dashed lines represent the two stable equi-

librium points, whereas the gray vertical bands highlight the

time intervals of intense energy exchange from the linear os-

cillator to the non-linear attachment.

In order to compare the different evolutions of the

energy dissipated by the NES in the different energy regions,

the same time span of 50 time units is considered in the

reported simulations. In Figure 2(a), the nonlinear beats

(LPT) occurring in the intermediate energy region (X¼ 0.1)

imply a regular intermittent sequence of strong energy

exchange intervals; the amount of energy dissipated by the

NES in the considered time interval is around 45%. In

Figure 2(b), the energy exchange due to 1:1 resonant capture,

occurring in the high energy region (X¼ 0.55), is shown to

take place at an almost constant, slower rate; the amount of

energy dissipated by the NES in the considered time interval

is around 8%.

The low-energy main energy transfer mechanisms that

will be addressed in this work are depicted in Figure 3. In

particular, in Figure 3(a), the aperiodic alternating in-well

FIG. 2. Main energy transfer mechanisms at intermediate and high energy levels; NES (LO) displacement is in red (blue) and dashed lines represent the two

stable equilibrium points. Parameters are: C0 ¼ �0:03;C ¼ 1:0; k1 ¼ k2 ¼ 0:001: (a) nonlinear beats (LPT) occurring for intermediate input energy level

(X¼ 0.1), associated ENESðtÞ and energy components evolution; (b) 1:1 resonant capture (NNM) occurring for high input energy level (X¼ 0.55); the associ-

ated measures of ENESðtÞ and the evolutions of the instantaneous energy components of the LO and the NES are also depicted.
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and cross-well oscillations, obtained for X¼ 0.055, show

irregular (in both duration and time of occurrence) intermit-

tent intervals of strong energy exchange; the amount of

energy dissipated by the NES in the considered time interval

is around 35%. In Figure 3(b), these time intervals occur

once again in a regular intermittent sequence corresponding

to the secondary nonlinear beats (LPT) occurring at the very

low energy region (X¼ 0.02); the amount of energy dissi-

pated by the NES in the considered time interval is around

45%.

III. LOW-ENERGY TRANSFERS BASED
ON PSEUDO-SEPARATRIX CHAOS

In this section, the general features of the dynamics

observed for low energy impulses acting on the LO are dis-

cussed. The reported numerical results aim to show that the

two nonlinear targeted energy transfer mechanisms occurring

at low energy shown in Figure 3 can be effectively described

by reducing the dynamics to a single degree of freedom

oscillator.

Towards this end, we reconsider the equations of motion

(1) and introduce a new normalization of the system

parameters and variables that will facilitate our study of

cross-well oscillations. By introducing the new variable

u ¼ v� x and rescaling the parameters of system (1) as

follows:

s ¼ x0t; e2 ¼ m2

m1

� 1; x0 ¼
ffiffiffiffiffiffi
k1

m1

r
; �C0 ¼

k2

m2x2
0

;

�C ¼ k3

m2x2
0

l1 ¼
c1

m1x0

; l2 ¼
c2

m2x0

; (6)

the equation of motion (1) can be put in the form

ð1þ e2Þ€x þ e2€u þ l1 _x þ x ¼ 0;

€u þ €x þ l2 _u þ �C0uþ �Cu3 ¼ 0; (7)

where the derivatives with respect to s are considered. The

initial conditions at s¼ 0 are given by x ¼ u ¼ 0; _x ¼ v0;
_u ¼ �v0, and the mass ratio is kept fixed throughout this

study at the value e2 ¼ 0:05.

At first, in order to describe the influence of the negative

stiffness on the relative displacement u, the evolution of the

average frequency content of u as the negative stiffness C0

increases is considered. This global index is computed by

FIG. 3. Main energy transfer mechanisms at low energy levels; NES (LO) displacement is in red (blue) and dashed lines represent the two stable equilibrium

points. Parameters are: C0 ¼ �0:03;C ¼ 1:0; k1 ¼ k2 ¼ 0:001: (a) Aperiodic alternating in-well and cross-well oscillations occurring for low input energy

level (X¼ 0.055), associated ENESðtÞ and energy components evolution; (b) in-well nonlinear beats (secondary LPT) occurring for low input energy level

(X¼ 0.02); the associated measures of ENESðtÞ and the evolutions of the instantaneous energy components of the LO and the NES are also depicted.
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taking a sequence of Discrete Fourier Transforms (DFT) of

the time histories of the response u corresponding to twenty

values of C0 between 0 and �1. Since the signals are highly

nonstationary, the spectral content obtained through the DFT

provides an estimate of the average frequency content of

the signals in time. The contour plots of the obtained surfaces

are shown in Figures 4(a) and 4(b) for the undamped and

damped cases (l1 ¼ l2 ¼ 0:01), respectively. For the low

energy impulse (v0 ¼ 0:25), the pure cubic configuration (i.e.,

C0 ¼ 0) shows a monochromatic response (x¼ 1) corre-

sponding to the absence of energy transfer. As the negative C0

increases, however, the spectral content of u broadens for

both the undamped and damped cases. In the latter case, close

to C0 ¼ �1:0, the frequency content spreads over the range

of 0 < x < p=4; the observed broad frequency content does

not show any preferential frequency of oscillation of the NES,

thereby suggesting that the cross-well response becomes ape-

riodic. Based on this first evidence of irregular oscillations,

more insights into this dynamics are sought by considering

the projection of the transient dynamics on the phase plane

depicting the relative displacement u versus its derivative _u.

At this point, we note that the potential energy of the

system (4) is given by

V x; uð Þ ¼
1

2
x2 þ 1

4
�Cu4 þ 1

2
�C0u2: (8)

At the initial instant s¼ 0, the potential energy is equal to

zero (for x0 ¼ 0 and v0 ¼ 0), and the kinetic energy has its

maximal value due to the impulsive nature of the applied ex-

citation. However, we note that this condition can also be

achieved at any instant when the condition Vðx; uÞ ¼ 0 is sat-

isfied, namely, for

x ¼ 6u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �C0 � �Cu2

2

r
: (9)

Clearly, this may occur not only when x0 ¼ 0 and v0 ¼ 0

but also whenever Eq. (9) is satisfied. So, this curve is a geo-

metric locus of points in configuration space where the

kinetic energy is maximal. If the phase space and, in particu-

lar, its projection into the plane u� _u, is considered, the ki-

netic energy is maximal for almost horizontal trajectories

which can arise in the presence of a separatrix. Therefore,

such trajectories have to be concentrated in the vicinity

of the curve given by (9) which will be named as the

pseudo-separatrix. This equipotential curve is represented

by the black curve shown in Figure 5 (bottom) where the

concentration of trajectories is also clearly depicted. The

time-histories of the damped system’s response and corre-

sponding u- _u phase-plane are also shown in Figure 5. As

shown in this figure, through the projection on the phase-

plane, outer (a), inner (c), and crossing (b) solutions can be

conveniently classified with respect to the overlapped

pseudo-separatrix belonging to the u-x plane. The relative

displacement u (red) and the LO displacement x (blue) are

shown for three time intervals corresponding to different

regimes; the dashed lines represent the two stable equilib-

rium points. Few initial nonlinear beats (LPTs), character-

ised by trajectories approaching the pseudo-separatrix and

crossing it with a regular pace, can be observed (Figure

5(a)). Afterwards, as shown in Figure 5(b), as the energy

decreases, aperiodic alternating cross-well and in-well oscil-

lations take place. The latter entail irregular repeated

pseudo-separatrix crossings, allowing for efficient energy

absorption by the NES. The trajectories eventually enter

(are captured by) one of the two wells and the dynamics of

the relative displacement u smoothly decays into one of the

two stable equilibrium points. In essence, by depicting the

low-energy dynamics in the phase-plane, it can be inferred

that an equivalent single-degree-of-freedom nonlinear oscil-

lator can be derived to capture and predict the two

FIG. 4. Evolution of the average frequency content of u as the negative stiffness C0 increases. (a) Undamped case; and (b) damped case, l1 ¼ l2 ¼ 0:01.
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phenomena we are interested in, namely, the aperiodic

cross-well oscillations and the in-well nonlinear beats.

IV. APERIODIC (CHAOTIC) CROSS-WELL
OSCILLATIONS

The analytical description of the aperiodic cross-well

oscillations anticipated in Sections II and III is pursued by

reducing the Eq. (5) to a single degree of freedom system.

By assuming that k2 is small, and that x is much smaller than

u, the renormalisation given by ~u ¼ u=ðeu0Þ; ~x ¼ x=x0 ena-

bles one to rewrite (4) as follows (where the tilde in the nor-

malized displacements is omitted from here on):

1þ e2ð Þ€x þ e3 u0

x0

€u þ e2l1 _x þ x ¼ 0;

€u þ a€x þ l2 _u þ �C0uþ Bu3 ¼ 0; (10)

where a lightly damped primary structure is assumed and

x0

u0

¼ O eð Þ; a ¼ x0

eu0

¼ O 1ð Þ;

B ¼ e2u2
0

�C ¼ O 1ð Þ; �C0 ¼ O 1ð Þ: (11)

By retaining only the first order terms in Eq. (10), the follow-

ing approximate system is obtained:

€x þ x ¼ 0; €u þ l2 _u þ �C0uþ Bu3 ¼ �a€x: (12)

From the solution of the first equation, namely,

x ¼ A sinðsþ uÞ, we obtain the reduction of the full system

to the single degree of freedom equation given by

€U þ l2
_U þ �C0U þ BU3 ¼ �aA sinðsþ uÞ: (13)

By rescaling Eq. (13) according to s1 ¼
ffiffiffi
B
p

s; x ¼ 1=
ffiffiffi
B
p

, for
�C0=B ’ �1; l ¼ l2=B, the SDOF system can be rewritten as

€U þ l _U � U þ U3 ¼ A1 sinðxsÞ þ A2 cosðxsÞ; (14)

in which the derivatives are taken with respect to the new

rescaled time variable s1. Figure 6 depicts a comparison

between the full (red) and the reduced (blue) system

responses. The qualitative good agreement between the

two systems can be observed in terms of both response

time-histories and phase-plane orbits in which the pseudo-

separatrix on the u-x plane is also shown in black; the

parameters adopted in the simulations are B¼ 0.6, �C0

¼ �0:6; l2 ¼ 0:001.

The reduction of the full system to a single oscillator

governed by Eq. (14) in order to interpret the low-energy

dynamics implies the possibility of exploiting classical

results available for the forced, damped Duffing equation.

The interest lies in predicting the occurrence of aperiodic

cross-well oscillations taking place for energy intervals

bounded above by LPTs and bounded below by in-well

oscillations. Therefore, by considering Eq. (14), these lower

and upper energy thresholds can be identified through the an-

alytical approximations provided by the Melnikov approach

and the Lyapunov characteristic exponents, respectively.

A. Melnikov analysis for homoclinic bifurcation

Starting from the analysis of the transition from the

cross-well aperiodic oscillations to the in-well periodic ones,

the Melnikov argument can be used to find the necessary

conditions for the occurrence of the homoclinic bifurcation

of the hilltop saddle. As known, this global approximate

method aims at studying the persistence of periodic (reso-

nant) and homoclinic orbits of a conservative system under

weak perturbations provided by damping and external

excitation.18,19

We consider the following perturbed damped first order

system derived from Eq. (14) by setting U ¼ x1; _U ¼ x2:

_x1 ¼ x2 _x2 ¼ x1 � x3
1 þ �½A cosðxsÞ � lx2� : (15)

In (15), � is a small parameter governing the weak perturba-

tion, while A and l represent amplitude of the harmonic ex-

citation, directly related to the full system LO displacement,

and damping, respectively. For �¼ 0, the orbits of this sys-

tem along the homoclinic loops (i.e., the separatrix) are

FIG. 5. Time-histories of the damped system’s response and corresponding u- _u phase-plane. Relative displacement u (red), LO displacement x (blue); the

dashed lines represent the two stable equilibrium points. The pseudo-separatrix on the u-x plane is shown in black.
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denoted as x1;h; x2;h and can be analytically derived by quad-

ratures. Then, the homoclinic Melnikov function describing

the distance between the perturbed stable and unperturbed

manifolds of the weakly perturbed system with � not equal to

zero is defined as

Mðs0;/0Þ ¼
ð1
�1
�lx2

2;h6Ax1;h cos ½xðsþ s0Þþ/0�dt: (16)

Given that x1;h ¼ 6
ffiffiffi
2
p

sech s; x2;h ¼ 7
ffiffiffi
2
p

sech s tanh s, Eq.

(16) becomes

M s0;/0ð Þ ¼ � 4

3
l6

ffiffiffi
2
p

Apx sech
px
2

sin xs0 þ /0: (17)

A necessary condition for a homoclinic bifurcation to occur

is obtained by the inequality18,19

A <

4

3
lffiffiffi

2
p

px sech
px
2

; (18)

from which the critical amplitude Acr is determined when (18)

becomes an equation. It can then be concluded that for A > Acr

the stable and the unstable manifolds intersect transversely

leading to homoclinic bifurcations and chaotic trajectories,

while they are disjoint for A < Acr . For A ¼ Acr, the stable

and unstable manifolds are tangent to each other, and this

transition from detachment to intersection through a tangency

of manifolds is asymptotically studied. The function AcrðxÞ
is shown in Figure 7(a) for three values of damping

(l ¼ 0:01; 0:02; 0:03). The vertical dashed line corresponds to

the value x ¼ 1=
ffiffiffi
B
p

for B¼ 0.6 considered for the numerical

simulations shown in Figures 7(b)–7(d) corresponding to A3

¼ 0:15;A2 ¼ 0:05;A1 ¼ 0:009, respectively, with l ¼ 0:01.

As predicted by the analytical approximation, as the amplitude

of the harmonic forcing increases, the threshold is reached and

aperiodic (chaotic) cross-well oscillations occur.

The full system governed by Eqs. (10) is now reconsid-

ered in order to relate the critical amplitude of the harmonic

forcing acting on the reduced single oscillator to the ampli-

tude of the LO displacement x. In particular, it is shown that

the critical value Acr provides a reliable estimate of the criti-

cal LO displacement leading to the transition from the cross-

well aperiodic (chaotic) oscillations to the periodic in-well

ones in terms of the relative displacement u between LO and

NES. The numerical results reported in Figure 8 refer to

the response of system (15) where �2 ¼ 0:05, B¼ 0.6,
�C0 ¼ �0:6; u0 ¼ 0:774; x0 ¼ 0:173. The green and red

amplitude intervals of the LO response x highlighted in

Figure 8(c) correspond to the forcing amplitude regions

reported in Figure 7(a) for the single-degree-of-freedom

reduced order system. Furthermore, the vertical dashed line

reported in Figures 8(b) and 8(c) corresponds to the transi-

tion to the periodic in-well oscillations taking place when the

amplitude of the LO response decreases and enters the red

region (jxj < 0:05), in good agreement with the Melnikov

prediction shown in Figure 7(a). Such periodic in-well oscil-

lations show rather clearly the nonlinear beat phenomenon

during which significant energy exchanges between the LO

and the NES take place; this regime will be specifically

addressed in Sec. V.

FIG. 6. Comparison between the full (red) and the reduced (blue) system responses. (a) Relative displacement of the full system (top) and corresponding orbit

in a projection of the phase space (bottom); (b) relative displacement of the reduced system (top) and corresponding orbit in a projection of the phase space

(bottom).
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B. Lyapunov characteristic exponents analysis

The Melnikov analysis carried out in Section IV A

enables one to identify an approximate lower bound of the

LO displacement amplitude leading to the existence of

aperiodic (chaotic) cross-well oscillations. In this section,

the analysis is extended by computing the Lyapunov charac-

teristic exponents in order to identify both lower and upper

boundaries of the region of chaotic cross-well oscillations.

As well known, the Lyapunov exponents (LEs) provide a

quantitative measure of the degree of stochasticity of a tra-

jectory, as they represent the mean exponential rate of diver-

gence from it of trajectories.20

The LE is defined as

kL ¼ lim
d0!0;t!1

1

t
ln

d tð Þ
d0

� �� �
; (19)

where d(t) is the distance in phase space between a given

orbit and a test orbit beginning with a nearby initial

FIG. 7. Critical forcing amplitude Acr for different damping values and oscillator responses for l ¼ 0:01: (a) AcrðxÞ for l ¼ 0:01 (blue), l ¼ 0:05 (red), l ¼
0:15 (black) derived by homoclinic Melnikov analysis; (b) oscillator cross-well aperiodic response for forcing amplitude A3 ¼ 0:15 by direct numerical inte-

gration of system (15); (c) transition from cross- to modulated in-well oscillator response for forcing amplitude A2 ¼ 0:05; and (d) oscillator in-well response

for forcing amplitude A1 ¼ 0:009.

FIG. 8. Transient response of the full system (10): (a) Time-hystories of the LO displacement x (blue) and the relative displacement u (red); (b) closer view of

u during the transition (vertical dashed line) from aperiodic cross-well oscillations to in-well periodic secondary nonlinear beats; (c) closer view of x during

the same time interval highlighting the green and red amplitude regions corresponding to Figure 7(a) as predicted by the sdof Melnikov analysis.
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condition at a distance dð0Þ ¼ d0. There is one LE kL for

each phase space dimension in a general multi-dimensional

dynamical system, and the maximum of this set is called the

maximal Lyapunov exponent or the Lyapunov characteristic

exponent. An analytical estimation of such characteristic

exponents is usually impracticable due to the nonintegrabil-

ity of the chaotic motion, so one must resort to numerical

methods for its estimation. Among the numerous numerical

schemes proposed for the computation of the Lyapunov

characteristic exponent, the “renormalization” scheme devel-

oped by Benettin and collaborators is implemented here.21

According to this method, at first, an initial condition for

the orbit and a second nearby test orbit at a distance d0 are

chosen. Then, the equations of motion for the original and

test orbits are solved by renormalizing the latter at t ¼ js,

i.e., at integer multiples of s. At each k-multiple of s, the par-

tial sum of the exponential growth rate for each segment

given by

kk ¼
1

ks

Xk

j¼1

ln
dj

d0

� �
(20)

is computed and it can be shown that the maximal Lyapunov

exponent is obtained as limk!1kk. Therefore, for regular

orbits, kk will decrease toward zero as k increases, while

for chaotic orbits, kk should approach a positive value as k
increases. In Figure 9, the reduced order system governed

by the damped (l ¼ 0:01) SDOF oscillator displacement

time-hystories and the corresponding Lyapunov characteristic

exponents are shown, for different magnitudes of the har-

monic excitation: Regular orbits are obtained for A¼ 0.01

(Figure 9(c)) and A¼ 0.26 (Figure 9(a)), while chaotic

orbits occur for A¼ 0.15 (Figure 9(b)). In particular, as the

amplitude increases, periodic in-well oscillations, aperiodic

cross-well oscillations, and periodic cross-well oscillations

take place. The lower bound obtained is in good agreement

with the Melnikov approximation. Moreover, the linear oscil-

lator displacement range of 0:01� 0:26 within which chaotic

cross-well oscillations occur obtained through the Lyapunov

characteristic exponents is in good agreement with the results

obtained for the full system shown in Figure 8(c).

V. LOW-ENERGY TRANSFERS BASED ON IN-WELL
NONLINEAR BEAT PHENOMENA

In this section, the low-amplitude nonlinear beats taking

place once the NES dynamics falls in one of the two poten-

tial wells (see Figure 8(a)) are studied by interpreting them

as LPTs.2 LPTs22,23 correspond to regimes of most intense

energy exchanges between different particles or nonlinear

normal modes24 of a dynamical system, and their role in the

theory of non-stationary resonant dynamics is similar to the

role of NNMs in stationary resonant dynamics. Contrary,

however, to stationary and non-stationary non-resonant oscil-

lations described efficiently in the framework of NNMs, res-

onant non-stationary processes are characterized by strong

modulations and intense energy exchanges between different

parts or modes of a system. Hence, the concept of LPT will

be important in the discussion of energy exchange phenom-

ena caused by the essential stiffness nonlinearities of the sys-

tem considered. An LPT is an orbit corresponding to zero

initial conditions of the system, with the exception of the ini-

tial displacement of the LO.

Different from the case of the (primary) LPTs studied in

Ref. 1 where a symmetric system was considered, here, the

asymmetric case of LPTs must be analyzed.25 In order to

describe this peculiar dynamical regime, it is convenient to

refer to a Poincar�e map of the original system, governed by

FIG. 9. Reduced damped (l ¼ 0:01) SDOF system displacement time-hystories (top) and corresponding Lyapunov characteristic exponents on log-log plots

(bottom): (a) Regular orbit (periodic cross-well oscillations) for A¼ 0.26; (b) chaotic orbit (aperiodic cross-well oscillations) for A¼ 0.15; and (c) regular orbit

(periodic in-well oscillations) for A¼ 0.009.
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(1) expressed in non dimensional form, in the nonlinear os-

cillator phase space.2 Figures 10(b) and 10(d) show the

map obtained at intermediate (i.e., E¼ 0.006) and low

energy level (i.e., E ¼ 1:0E–6), respectively, representing

the trajectories of the system for two sets of initial condi-

tions: fx0; v0 ¼ 0; _x0; _v0 6¼ 0g and fx0; v0 6¼ 0; _x0; _v0 ¼ 0g.
The response corresponding to a primary LPT (studied in

Ref. 2) is shown in Figure 10(a) and its trajectory is high-

lighted in the Poincar�e map shown in Figure 10(b). In

Figures 10(c) and 10(d), the considered energy level is lower

than the energy barrier and the phase space is characterized

by two lobes of chaotic orbits including islands of regular

motion. The two symmetric islands of regular motion are

filled with quasi-periodic orbits encircling two stationary

points corresponding to dynamics in 1:1 resonance of oscil-

lations of the LO and in-well oscillations of the NES. The

trajectories separating the regions of regular motion encir-

cling these stationary points are the secondary LPTs trigger-

ing the low amplitude, nonlinear beats in which we are

interested as shown in Figure 10(c).

The reduced system governing the in-well dynamics is

now given by

€U þ l _U þ c1U þ c2U2 þ c3U3 ¼ F sinðxsþ uÞ: (21)

So, Eq. (21) replaces system (14) for the dynamics evolving

in the neighbourhood of the two stable equilibria with pa-

rameters given by

c1 ¼
�C0 þ 3 �Cd

B
; c2 ¼

D

B
; c3 ¼ 1;

l ¼ l2

B
; F ¼ � aA

B
; (22)

where the O(1) coefficient D ¼ 3 �Cdeu0 has been introduced.

Equation (21) can be rescaled as

€u þ le2 _u þ uþ 4a�u2 þ 8b�2u3 ¼ 2�2F sin
x
x0

s
� �

; (23)

in which

s0 ¼ x0s; x0 ¼
ffiffiffiffiffi
c1

p
; a ¼ c2

e4c1

;

b ¼ c3

e28c1

; ~l ¼ l
e2

ffiffiffiffiffi
c1
p ; ~F ¼ F

2e2c1

; (24)

and the tildes in the forcing amplitude F and damping pa-

rameter l were omitted. By denoting _u ¼ v and applying

complexification, the variables w ¼ vþ ju and w� ¼ v� ju
are introduced. Then, as proposed in Ref. 25 and reported in

detail in the Appendix, through the multiple scale method

the main asymptotic approximation u0 of the complex mod-

ulation u, through which the complex variables are

expressed, is derived. At the slow time scale s2 ¼ e2s, by

denoting u0 ¼ aejd and introducing the detuning parameter s
such that x=x0 ¼ 1þ e2s, the following system (see the

Appendix for details) is obtained:

FIG. 10. Poincar�e sections of the original system for C0 ¼ �0:03, C¼ 1.0, and associated responses, v (red), x (blue): (a) and (b) Primary LPT at intermediate

energy level (i.e., E¼ 0.006); (c) and (d) secondary LPT at low energy level (i.e., E ¼ 1:0E� 6); (a) cross-well high amplitude nonlinear beat; (b)and (d) pro-

jection of the dynamics to the NES phase-space v; _v; and (c) in-well low amplitude nonlinear beat.
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da

ds2

þ la ¼ �F sin D; a
dD
ds2

þ as� a�a3 ¼ �F cos D;

(25)

in which D ¼ d� ss2. In (25), D characterises the phase shift

between the LO and the NES, a represents the envelope of

the NES displacement, and F characterises the amplitude of

the LO. For the conservative case, the first integral of this

system is given by

H ¼ 1

4
a�a4 � sa2

2
� Fa cos D ¼ C; (26)

in which a� ¼ 3b� 20
3

a2 and C is a constant depending on

the initial conditions. From (26), the LPT corresponding to

the contour obtained for C¼ 0 can be depicted on the a� D
plane and is represented by the curves passing through the

segment a¼ 0 as shown in Figure 11 (red curve). This orbit

represents the most intense energy exchange between the LO

and the NES for in-well oscillations, in the form of modulated

nonlinear beats under condition of resonance (i.e., of com-

mensurate ratio of the frequencies of the LO and the NES).

Other curves associated with different initial conditions and

corresponding to quasi-periodic orbits with less intense

energy exchanges between the LO and the NES are also rep-

resented. The parameters considered in the simulation are

a ¼ 0:205; b ¼ 0:153 and the amplitude of the forcing term

is F¼ 0.006. This set of parameters corresponds to the case

shown in Figure 8 in which the occurrence of nonlinear beats

was clearly observed during in-well oscillations. In particular,

in this approximation, a smaller detuning parameter

(s¼ 0.044) is considered in order to be consistent with the as-

ymptotic expansion implying a 1:1 resonance condition. The

condition H¼ 0 yields the parameter a� corresponding to the

transition between different types of LPT, given by

a�LPT ¼
2s3

27F2
: (27)

As shown in Figure 11(a), small oscillations occur for

a� < a�LPT and the low amplitude LPT encircles the centre at

D ¼ 6p. In this case, the NES takes a relatively small amount

of energy from the LO. For a� ¼ a�LPT , both elliptic and hyper-

bolic points appear on the LPT at D ¼ 6p (Figure 11(b)). At

this threshold value, the LPT coincides with the separatrix and

the time of energy transfer from the LO to the NES becomes

ideally infinite. Afterwards, as shown in Figure 11(c) where

a� > a�LPT , large LPTs can be observed; in this case, the NES

takes a relatively large amount of energy from the LO and this

energy transfer occurs in a finite time interval. The phase plane

shows that the LPT encircles the centre at D¼ 0 and its ampli-

tude increases providing a clear indication of the occurrence of

large nonlinear oscillations, namely, the secondary nonlinear

beats.

As shown in Figure 12, the analytical prediction is

numerically validated by integrating directly Eq. (23) for a�

< a�LPT (blue) and a� > a�LPT (red). The transition from small

to large LPTs is accurately captured since a�LPT ¼ 0:179 (it

corresponds to the parameters considered for the results

reported in Figure 11) and the two solutions shown in Figure

12 correspond to a� ¼ 0:173 (blue) and a� ¼ 0:185 (red).

For the conservative case, an alternative description of

the LPTs can be derived by means of a second order differ-

ential equation. The latter is obtained by considering that for

H¼ 0

cos D ¼ a�a3 � 2sa

4F
;

so that, by differentiating the first equation in (25) with

respect to s2 and substituting the above expression for cos D,

the following system is obtained:

d2a

ds2
2

¼ �F cos D
dD
ds2

;
dD
ds2

¼ � s

2
þ 3a�a2

4
; (28)

leading to the differential equation for the LPT amplitude

FIG. 11. Asymmetric trajectories on the phase plane for different values of the constant C, see Eq. (22), with limiting phase trajectories (red) corresponding to

C¼ 0: (a) a� < a�LPT ; (b) a� ¼ a�LPT ; and (c) a� > a�LPT .

FIG. 12. Numerical validation of limiting phase trajectories corresponding

to a� < aLPT (blue) and a� > aLPT (red).
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d2a

ds2
þ l1a� l2a3 þ l3a5 ¼ 0; (29)

where

l1 ¼
s2

4
; l2 ¼

sa�

2
; l3 ¼

3a�
2

16
:

Figure 13(a) shows the phase plane obtained by integrating

Eq. (29) for l1 ¼ 0:0005; l2 ¼ 0:004; l3 ¼ 0:006. Three ini-

tial conditions are considered representing trajectories lying

inside (blue), on (red), and outside (green) the separatrix. These

three qualitatively different solutions correspond to the three

cases reported in Figures 11(a)–11(c), respectively. During

intense energy transfer, _a takes large values and the trajectories

corresponding to this fast motion tend to become straight lines

on the phase plane. It must be emphasised that Figure 13(a)

provides a dynamical representation of the LPTs which is

merely related to in-well oscillations. Therefore, by considering

the corresponding time-histories shown in Figure 13(b), an ana-

lytical estimate of the time duration of the transitions between

the two wells can be inferred. In particular, by adopting the

same parameters considered in the numerical results reported

in Sec. II, the transition time intervals (around 6 time units)

obtained for the large LPTs (green) are in good agreement with

those shown in Sec. II (Figure 3(a)). Since during these transi-

tions intense energy exchanges between the LO and the NES

occur, the analytical description of the LPTs provided in this

work can be used in a predictive capacity, that is, to design the

parameters of the system for most intense targeted energy

transfer from the directly excited LO to the bistable NES.

VI. CONCLUSIONS

The low-energy transient dynamics of a bistable nonlinear

energy sink coupled system is addressed. The system consists

of a primary LO connected to a lightweight mass (NES) by

means of a spring with both cubic nonlinear and negative lin-

ear components. A unique feature of this system, which clearly

distinguishes it from the previous designs, is its capacity for

passive targeted energy transfer from the LO to the NES even

at low energies. This is in contrast to the previous NES designs

based on purely cubic stiffness nonlinearities, where there

exists a energy threshold below which no targeted energy

transfer was possible. Indeed, when the LO is excited by a

low-energy impulse, two main nonlinear passive energy trans-

fer mechanisms from the LO to the NES arise: aperiodic (cha-

otic) cross-well oscillations and in-well nonlinear beats. The

description of each of these nonlinear mechanisms is facilitated

by reducing the full system to an equivalent single degree of

freedom reduced-order forced oscillator; this dimension reduc-

tion relies on the analogy between phase and configuration

spaces. Melnikov analysis and Lyapunov characteristic expo-

nents are then adopted to identify the region of existence of

chaotic cross-well oscillations which enable efficient targeted

energy transfer to the NES even at low-intensity applied

impulses to the LO. Asymmetric limiting phase trajectories are

investigated to derive analytical approximations of the in-well

nonlinear beats, which provide the second mechanism for

energy transfer. The proposed approaches describe and predict

the beneficial dynamic phenomena governing the targeted

energy transfer from the LO to the NES, thus providing valua-

ble tools to design efficient passive energy absorption devices

for low amplitude ambient vibrations.
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APPENDIX: REDUCED SYSTEM COMPLEXIFICATION

In order to describe the asymmetric LPTs, the reduced

order system (23) is expressed in complex form. By denoting

_u ¼ v, Eq. (23) becomes

_v þ le2vþ uþ 4aeu2 þ 8be2u3 ¼ 2e2F sin
x
x0

s
� �

: (A1)

Then, by applying complexification, the variables w ¼ vþ ju
and w� ¼ v� ju are introduced and (A1) becomes

dw
ds0

� jwþ e2l w� w�ð Þ � ae w� w�ð Þ2 þ jbe2 w� w�ð Þ3

¼ 2e2F sin
x
x0

s0

� �
; (A2)

FIG. 13. Analytical approximation of limiting phase trajectories for l1 ¼ 0:0005; l2 ¼ 0:004; l3 ¼ 0:006 and initial conditions inside (blue), on (red), and

outside (green) the separatrix. (a) Phase-plane; (b) time-history.
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with initial condition w¼ 0. At this point, the condition of

1:1 resonance is imposed by setting x ¼ x0. By setting

w ¼ uejs0 ; w� ¼ u�e�js0 , the complex slow modulation u is

governed by

du
ds0

þ e2l uþ u�e�2js0

� 	
� ae u2ejs0 þ u�

2

e�3js0 � 2juj2ejs0


 �
þ e2jb u3e2js0 � u�

3

e�4js0 � 3juj2uþ 3juj2u�e�2js0


 �
¼ 2e2e�js0 F sin

x
x0

s0

� �
: (A3)

After performing averaging of this complex differential

equation with respect to the “fast” normalized frequency

equal to unity, we apply the multiple scale method by con-

sidering the “fast” time scale s0 and the “slow” time scales

s1 ¼ es0; s2 ¼ e2s0;…. Following that, the slow modulation

u is expanded according to u ¼ u0 þ eu1 þ e2u2 þ � � �.
Substituting the previous expressions to the averaged

equation and considering only the leading order approxima-

tion, the equation governing the main asymptotic approxima-

tion is given by

du0

ds2

þ lu0 � a�jju0j2u0 ¼ �jFejss2 ; (A4)

where a� ¼ 3b� 20
3

a2 and u0ð0Þ ¼ 0; by setting u0 ¼ aejd,

and considering separately the real and imaginary parts of

Eq. (A4), we obtain Eqs. (25).
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