126 research outputs found

    Spin quantum tunneling in single molecular magnets: fingerprints in transport spectroscopy of current and noise

    Full text link
    We demonstrate that transport spectroscopy of single molecular magnets shows signatures of quantum tunneling at low temperatures. We find current and noise oscillations as function of bias voltage due to a weak violation of spin selection rules by quantum tunneling processes. The interplay with Boltzmann suppression factors leads to fake resonances with temperature-dependent position which do not correspond to any charge excitation energy. Furthermore, we find that quantum tunneling can completely suppress transport if the easy-plane anisotropy has a high symmetry.Comment: 4 pages, 3 figure

    Quantum tunneling induced Kondo effect in single molecular magnets

    Full text link
    We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that for half-integer spin of the molecule electron- and spin-tunneling \emph{cooperate} to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a non-monotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.Comment: 4 pages, 4 figure

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    Charge-switchable molecular magnet and spin blockade of tunneling

    Get PDF

    Electron transport through single Mn12 molecular magnets

    Full text link
    We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving non-degenerate spin multiplets.Comment: Accepted for Phys. Rev. Lett., 5 pages, 4 figure

    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

    Get PDF
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application

    Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers

    Full text link
    Recently, it has been shown that magnetic tunnel junctions with thin MgO tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR) values at room temperature1, 2. However, the physics of spin dependent tunneling through MgO barriers is only beginning to be unravelled. Using planar magnetic tunnel junctions in which ultra-thin layers of magnetic metals are deposited in the middle of a MgO tunnel barrier here we demonstrate that the TMR is strongly modified when these layers are discontinuous and composed of small pancake shaped nanodots. At low temperatures, in the Coulomb blockade regime, for layers less than ~1 nm thick, the conductance of the junction is increased at low bias consistent with Kondo assisted tunneling. In the same regime we observe a suppression of the TMR. For slightly thicker layers, and correspondingly larger nanodots, the TMR is enhanced at low bias, consistent with co-tunneling.Comment: Nano Letters (in press
    • …
    corecore