39 research outputs found

    Supplement levels and functional oils to replace virginiamycin for young bulls during early dry season on grasslands and finishing phase in feedlot systems

    Get PDF
    Aim of study: To assess the effects of replacing virginiamycin (VM) by functional oils (FO) from castor beans and cashew nut on beef cattle system during the early dry season (Experiment I) and during the finishing phase were evaluated the historical effect, keeping the treatments and methods intact (Experiment II).Area of study: These experiments were conducted at the Forage Crops and Grasslands section of São Paulo State University, “Julio de Mesquita Filho” (Unesp–Jaboticabal, São Paulo, Brazil).Material and methods: Two supplementation levels combined with two additives (four treatments in total) were evaluated: LSVM, low supplementation (0.3% body weight [BW]) with VM; LSFO, low supplementation (0.3% BW) with FO, HSVM, high supplementation (0.6% BW) with VM, and HSFO, high supplementation (0.6% BW) with FO. In both experiments, the experimental design was completely randomized with a 2 × 2 factorial arrangement (supplementation levels × additives).Main results: In Exp. I, the additive effect of VM provided greater average daily gain (ADG, p=0.02), higher supplementation level resulted in higher ADG (p=0.04) and the greatest crude protein apparent digestibility (p=0.002). However, no effects were observed between supplementation levels, additives, and interactions (p≥0.11) on voluntary intake and ruminal parameters. In Exp. II, LSVM treatment resulted in lower dry matter intake (p=0.04). Animals maintained on LSFO during the early dry season exhibited lower carcass yield (p=0.004).Research highlights: FO can be used to replace VM in beef cattle diet during the finishing phase in the feedlot without altering animal performance

    Polystyrene cellulose fiber composites: effect of the processing conditions on mechanical and dynamic mechanical properties

    Get PDF
    ABSTRACT The usage of natural fibers on the composites development has grown rapidly in the recent years due to the fibers plentiful availability, renewable source, low density and biodegradability. However, there are some drawbacks, for instance, the fiber dispersion on a polyolefin matrix. In this work, the influence of processing speed on the mechanical and dynamic mechanical properties of polystyrene (PS) filled with cellulose fiber composites was investigated. The composites were processed on a twin-screw co-rotating extruder, using screw speeds of 200 rpm, 400 rpm and 600 rpm. The dynamic mechanical properties and the mechanical properties were investigated as a function of fiber content. The composites processed on a screw speed of 400 rpm had presented an increase on flexural and impact strength, compared to the composites processed at 200 rpm. The flexural and storage modulus had increased when increasing the fiber content, as well as increasing the processing speed. The greater fiber dispersion obtained at a screw speed of 400 rpm hinders the agglomeration arrangement and distributes the fibers more equally on the matrix. The increase on processing speed probably generates a fiber size reduction, increasing the fiber superficial area and generating a greater contact with the matrix as well. Therefore, the efforts transference of matrix to fibers is improved, originating an increase on the evaluated properties
    corecore