247 research outputs found

    On leaf-beetles of the genus Palpoxena Baly, 1861 (Coleoptera: Chrysomelidae) from Malaysia and Indonesia

    Get PDF
    Four new species of the genus Palpoxena Baly, 1861 are described from Malaysia and Indonesia. Palpoxena achehensis sp. n. belongs to the P. bipartita (Jacoby, 1879) species group from Sumatra. This species has red elytra with the basal part black, the maxillary palpomere III is swollen, not flattened, eyes large, the antennomere III is strongly modified hook-shaped; the space between antennal sockets is flattened; the clypeus is with deep and wide excavation almost reaching eyes, the narrow space between them with the tubercle bearing the tuft of bristles on each side; antennae are slender, extended beyond apex of elytra; antennomere III is slightly flattened, antennomeres IV–V are cylindrical. Palpoxena sp. and Palpoxena klimenkoi sp. n. belong to the P. laeta Baly, 1861 species group from Peninsular Malaysia, Sumatra and Borneo. Palpoxena sp. from Sumatra, having the strongly enlarged and swollen protarsomere I, is most similar to Palpoxena shayakhmetovai Kizub, 2016 from Peninsular Malaysia and is possibly a Sumatran subspecies of the latter taxon. Although there are slight differences between them in the body colouration, the shape of the aedeagus and in the length/width ratio of the protarsomere I; it is not described as a new to sciences in this paper. Palpoxena klimenkoi sp. n. differs from other members of the species group by the following combination of characters: elytra dark bluish with narrow basal area; epipleura have very narrow sutural margin and wide apical area brown; antennomeres III–VIII are thickened, about 1.4–1.5 times wider than antennomere II, covered with not dense, short and adpressed setae on the ventral surface; the maxillary palpomere III is half-ellipsoid, with the slightly elongated and sharpened apical margin. Palpoxena parasabahensis sp. n. belongs to the P. variabilis (Jacoby, 1886) species group from Borneo. This new species differs from other members of the group by elytra green with reddish brown apex and entirely brown legs. In addition, only this species has the apex of the antennomere I with the protruding outer corner and the labrum with two long structures on inner side. Palpoxena trusmadiensis sp. n. has elytra green-blue or blue and tibiae darkened. This species differs from all congeners by the shape of the maxillary palpomere III which is slightly enlarged and flattened, but just a little wider than the palpomere II. Figures of the general view and the aedeagus are given for mentioned above and related species. A new key for males of the genus Palpoxena from Malaysia and Indonesia is proposed

    A new species of the genus Mimastra Baly, 1865 (Coleoptera: Chrysomelidae: Galerucinae) with cross-like elytral pattern from Vietnam

    Get PDF
    One new species, Mimastra levmedvedevi sp.Β n. from the group of species with crosslike elytral pattern, is described from Vietnam. Mimastra levmedvedevi sp.Β  n. is most similar to M. arcuata from which differs by details of coloration and by the apex of aedeagus with rather narrow, not emarginate tip on the apex. The figures of general view and aedeagus are given for the new and close specie

    To the knowledge of the leaf-beetles of the genus Taumacera Thunberg, 1814 (Coleoptera: Chrysomelidae) from Malaysia, Indonesia, and Thailand

    Get PDF
    Ten new species of the genus Taumacera Thunberg, 1814 are described from Malaysia, Indonesia, and Thailand: T. alexklimenkoi sp. n. from the viridis species-group; T. lamellicornis sp. n. from the insignis speciesgroup; T. pseudoantennata sp. n. from the antennata species-group; T. pseudonigricornis sp. n. from the nigricornis species-group; T. sinabungensis sp. n. and T. trizonalis sp. n. from the deusta species-group. Taumacera bezdeki sp. n. and T. moseykoi sp. n., having long antennae covered long, erected setae and metatibiae with apical process, as well as T. carinatipennis sp. n. and T. unicoloripennis sp. n., having not modified antenna and metatibiae with apical process, are unassigned to any species-group. The figures of general views and aedeagi are given for them and the majority of related species. The new identification keys for males of the antennata and the nigricornis species-groups, as well as for the Sumatran representatives of the deusta species-group with the angulate pronotum are proposed. A new colour form of T. monstrosa (Jacoby, 1899) with darkened elytra is described from Sumatra. Taumacera javanensis (Jacoby, 1895) has antennomeres VII and VIII dilated with distinct spine directed backwards on the latter and is assigned to the antennata species-group. The lectotype of T. javanensis is designated. The following new synonymy is proposed: Taumacera antennata (Mohamedsaid, 1997) = T. musaamani (Mohamedsaid, 2010), syn. n

    To the knowledge of the leaf-beetle fauna (Coleoptera: Chrysomelidae) of the Russian Far East

    Get PDF
    Cryptocephalus (Burlinius) flavolimbatus Pic, 1920 is recorded from Russia for the first time. This species has the aedeagus with the long and thin apical process and belongs to the group of yellow species with a black pattern on the elytra and the distinctly punctured pronotum. New records of Lema concinnipennis Baly, 1865, Chaetocnema kimotoi Gruev, 1980, Neocrepidodera ohkawai Takizawa, 2002, Phyllotreta rectilineata Chen, 1939 in Russia are provided. Photographs of spermathecae and a new identification key for females externally similar species Tricholochmaea ussuriensis Romantsov, 2021, T. semifulva (Jacoby, 1885) and Pyrrhalta flavescens (Weise, 1887) are given for the first time; the general view of T. ussuriensis is imaged for the first time. The material on the rare and little-known species Cryptocephalus gussakovskii Lopatin, 1952 was studied and the lectotype (female) of this species is designated; the paralectotype (male) was probably lost. The original description and futher interpretations of this species incompletely correspond to the lectotype. In the majority of keys this species differs from other representatives of the subgenus Burlinius Lopatin, 1965 only in the anterior margin of the prothorax tooth-like bent downwards, and the images of the aedeagus and the description of male protibiae are absent. According to the original description the male has the protibia curved at the base, and there is no mention of the tooth-like anterior margin of the prothorax. In further works, I.K. Lopatin used only the tooth-like anterior margin of the prothorax (a very rare character within the subgenus Burlinius) to distinguish this species from other representatives of the subgenus. However, he didn’t mention curved male protibia anymore. The description and images of males of C. gussakovskii are given for the first time. All males have strongly curved protibiae with the angularly widened inward distal part. This feature allows to attribute this species to the C. populi species-group. Both males and females of C. gussakovskii have tooth on the prothorax, which distinguishes them from C. populi Suffrian, 1848 and from other yellow representatives of the subgenus. Differences between C. gussakovskii and C. sagamensis Tomov, 1982 from Korea are given; the first species has the smooth, almost impunctate pronotum, the pronotal punctation of latter species is distinct and deep. Two taxa, C. pseudopopuli SchΓΆller, 2011 from South Korea and C. gussakovskii are probably conspecific. Figures of the general view and aedeagi are given for Cryptocephalus flavolimbatus, C. gussakovskii, Chaetocnema kimotoi, Neocrepidodera ohkawai and Phyllotreta rectilineata

    ΠŸΡ–Π΄ΠΏΡ–Π»ΡŒΠ½Π° Π³Ρ€ΡƒΠΏΠ° ОУН Π² ΠœΠ°Ρ€Ρ–ΡƒΠΏΠΎΠ»Ρ– (ΠΆΠΎΠ²Ρ‚Π΅Π½ΡŒ 1941 - Ρ‡Π΅Ρ€Π²Π΅Π½ΡŒ 1943)

    Get PDF
    Π£ статті Π²ΠΈΡΠ²Ρ–Ρ‚Π»ΡŽΡ”Ρ‚ΡŒΡΡ питання Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΎΠ³ΠΎ визвольного Ρ€ΡƒΡ…Ρƒ Π² ΠœΠ°Ρ€Ρ–ΡƒΠΏΠΎΠ»Ρ– Π² 1941-1943 Ρ€Ρ€. Розглянуто формування ΠΌΠ°Ρ€Ρ–ΡƒΠΏΠΎΠ»ΡŒΡΡŒΠΊΠΎΡ— ΠΏΡ–Π΄ΠΏΡ–Π»ΡŒΠ½ΠΎΡ— Π³Ρ€ΡƒΠΏΠΈ ОУН, Ρ–Π΄Π΅ΠΉΠ½Ρ– засади Ρ‚Π° напрямки Ρ—Ρ— Π±ΠΎΡ€ΠΎΡ‚ΡŒΠ±ΠΈ, місцС осСрСдку "ΠŸΡ€ΠΎΡΠ²Ρ–Ρ‚ΠΈ" Π² Π±ΠΎΡ€ΠΎΡ‚ΡŒΠ±Ρ– ОУН, Ρ€ΠΎΠ»ΡŒ Π„Π²Π³Π΅Π½Π° Π‘Ρ‚Π°Ρ…Ρ–Π²Π° як ΠΊΠ΅Ρ€Ρ–Π²Π½ΠΈΠΊΠ° Π·Π°Π·Π½Π°Ρ‡Π΅Π½ΠΎΡ— ΠΏΡ–Π΄ΠΏΡ–Π»ΡŒΠ½ΠΎΡ— Π³Ρ€ΡƒΠΏΠΈ. Π ΡƒΠΉΠ½ΡƒΡ”Ρ‚ΡŒΡΡ історичний ΠΌΡ–Ρ„ ΠΏΡ€ΠΎ Π±Ρ€Π°ΠΊ ΠΏΡ–Π΄Ρ‚Ρ€ΠΈΠΌΠΊΠΈ ОУН Π½Π° сході Π£ΠΊΡ€Π°Ρ—Π½ΠΈ

    Monitoring Of Air Quality Parameters For Construction Of Fire Risk Detection Systems

    Get PDF
    The analysis of fire developmental process is given, which showed that there are seven stages of fire development, a set of phenomena (factors, signs) of fire risk condition, characterized by a set of defined parameters, corresponds to each stage. Observed that the registration of high staging factors (high ambient temperature, content of CO[2], etc.) means the registration of actual low staging fire (thermal destruction of materials gases, fumes, etc.) - fire risk situation. It is shown that the decrease of registered factor staging leads to construction of fire preventive and diagnostic systems as the lower is registered stage, the more uncertain is connection between the fact of its detection and a fire. It is indicated that with development of electronic equipment the staging of fire situations factors used for detection is reducing in whole, and also it is noted that for each control object it is necessary to choose (identify) the optimal factor, in particular, in many ways the optimal factor for aircrafts are smokes and their TV image

    ΠŸΠ•Π Π‘ΠŸΠ•ΠšΠ’Π˜Π’Π« Π ΠΠ—Π’Π˜Π’Π˜Π― Π‘ Π£Π§Π•Π’ΠžΠœ Π’ΠžΠ—ΠœΠžΠ–ΠΠžΠ‘Π’Π•Π™ Π˜ΠΠΠžΠ’ΠΠ¦Π˜ΠžΠΠΠžΠ™ Π‘Π€Π•Π Π«

    Get PDF
    In the article the issues of domestic innovative sphere and companies’ interaction are considered. It is noted that the innovative sphere exists and develops independently as such in the Russian Federation.Purposes / tasks. The purposes of the article are: analysis of the reasons of innovations’ low demand from the domestic companies; a search of counteraction measures to existing shortcomings of innovative sphere and companies’ interaction; a research of changes of both internal, and external characteristics of the innovative environment and its approach to the EU countries’ standards in the beginning of the 21st century.Methodology. Methods of the economic and statistical analysis. Theoretical base of the article comprise the national and foreign researchers’ works in the field of innovation management, technological management, and that of the companies’ and economical general development.Results. Poorly positive dynamics of patents growth in comparison with a volume of R&D costs is established in this researching. Almost similar dependence between dynamics of innovative goods and services sales growth in comparison with technological innovations costs was discovered in analysis. The received total integrated estimates of dynamic level of the RF innovative economic development during the period from 1998 to 2015 proved the existence of poorly positive tendency of such dynamics growth. To coordinate companies’ interests of development with innovative environment opportunities, the scheme of interaction among innovative organizations and the companies within a full innovative cycle is off ered.Conclusions / importance. The carried-out analysis of Russian innovative sphere shows that despite the state support measures which has been taken in recent years, it stagnates and exerts the insufficient impact on economy and society in general. Poorly positive dynamics of patents growth compared to R&D costs, and also similar dependence of innovative goods and services sales growth depending on technological innovations costs is also revealed. It is established that one of the main reasons of insufficient positive infl uence of the innovative sphere on economy is the lower level of development of the most part of the innovative sphere of the Russian Federation, compared with that of the leading EU countries, and support by other factors infl uencing its development.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся вопросы взаимодСйствия отСчСствСнной ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ сфСры с компаниями. ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ инновационная сфСра Π² Π Π€ сущСствуСт ΠΈ развиваСтся Π² основном ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ.ЦСль/Π·Π°Π΄Π°Ρ‡ΠΈ. ЦСлью ΡΡ‚Π°Ρ‚ΡŒΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ: Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΈΡ‡ΠΈΠ½ Π½ΠΈΠ·ΠΊΠΎΠΉ вострСбованности ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΉ отСчСствСнными компаниями; поиск ΠΌΠ΅Ρ€ ΠΏΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ слоТившимся нСдостаткам Π²ΠΎ взаимодСйствии ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ сфСры ΠΈ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ; исслСдованиС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΊ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ…, Ρ‚Π°ΠΊ ΠΈ Π²Π½Π΅ΡˆΠ½ΠΈΡ… характСристик ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ срСды ΠΈ Π΅Π΅ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊ стандартам стран Π•Π‘ Π½Π°Ρ‡Π°Π»Π° Π₯Π₯I Π²Π΅ΠΊΠ°.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ экономичСского ΠΈ статистичСского Π°Π½Π°Π»ΠΈΠ·Π°. ВСорСтичСской Π±Π°Π·ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€ΡƒΠ΄Ρ‹ отСчСствСнных ΠΈ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… исслСдоватСлСй Π² области управлСния инновациями, тСхнологиями, Π° Ρ‚Π°ΠΊΠΆΠ΅ развития ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ ΠΈ экономики Π² Ρ†Π΅Π»ΠΎΠΌ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ…ΠΎΠ΄Π΅ провСдСния исслСдования установлСна слабо ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° роста числа ΠΏΠ°Ρ‚Π΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ объСма Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° НИОКР; ΠΏΠΎΡ‡Ρ‚ΠΈ аналогичная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡΠ²ΠΈΠ»Π°ΡΡŒ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ роста объСма ΠΏΡ€ΠΎΠ΄Π°ΠΆ ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚ΠΎΠ²Π°Ρ€ΠΎΠ² ΠΈ услуг Π² зависимости ΠΎΡ‚ Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° тСхнологичСскиС ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΡ‚ΠΎΠ³ΠΎΠ²Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ уровня ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ развития экономики Π Π€ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ с 1998 ΠΏΠΎ 2015 Π³Π³., ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ слабо ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ роста Ρ‚Π°ΠΊΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Для согласования интСрСсов развития ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ с возмоТностями ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ срСды ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° схСма взаимодСйствия ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ с компаниями Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°.Π’Ρ‹Π²ΠΎΠ΄Ρ‹/Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· состояния ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ сфСры России ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΎΠ½Π°, Π½Π΅ смотря Π½Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡ‹Π΅ Π² послСдниС Π³ΠΎΠ΄Ρ‹ ΠΌΠ΅Ρ€Ρ‹ государствСнной ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ, стагнируСт Π² своСм Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΈ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ нСдостаточноС влияниС Π½Π° экономику ΠΈ общСство Π² Ρ†Π΅Π»ΠΎΠΌ. Π’Π°ΠΊΠΆΠ΅ выявлСна слабо ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° роста числа ΠΏΠ°Ρ‚Π΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ объСма Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° НИОКР, Π° Ρ‚Π°ΠΊΠΆΠ΅ аналогичная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ роста объСма ΠΏΡ€ΠΎΠ΄Π°ΠΆ ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚ΠΎΠ²Π°Ρ€ΠΎΠ² ΠΈ услуг Π² зависимости ΠΎΡ‚ Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° тСхнологичСскиС ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΏΡ€ΠΈΡ‡ΠΈΠ½ нСдостаточного ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ влияния ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ сфСры Π½Π° экономику являСтся ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΈΠΉ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π²Π΅Π΄ΡƒΡ‰ΠΈΠΌΠΈ странами Π•Π‘ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ развития самой ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ сфСры Π Π€ ΠΈ Π΅Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌΠΈ Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅

    The Assessment of the Level of Pollution of Slime Pits with Heavy Metals

    Get PDF
    In drilling and running oil and gas wells the great amount of toxic waste is formed and in the surface of the lithosphere and hydrosphere the great amount of different chemical elements and compounds access, they are needed to be isolated from the environment. The most useful way of isolation is their utilization in the slime pits on the wells territory. Heavy metals are dangerous waste in the drilling slime; they accumulate in soil and under some conditions they in form water-soluble parts and migrate in to the soil. The aim of this paper is to organize the chemical and analytical research of the amount of heavy metals in the drilling slime, and research the mechanism of their spreading on different depth and square in the slime pits typical for the oil site placed in KHANTY-Ugra

    Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ частотной характСристики измСритСля ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π½Π° основС RL-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€Π°

    Get PDF
    Introduction. Measurements of the amplitude-time characteristics of pulsed magnetic fields are required in various research and technology areas. Such measurements are carried out during pulsed magnetic field immunity testing, with the magnetic field pulse rise time being hundreds of ns, and the pulse duration to its half initial value (halfdroop) being hundreds of Β΅s.Aim. To develop a meter of magnetic field strength with a linear conversion characteristic for measuring the pulse rise time, the pulse duration to its half-droop, and the peak value of the pulsed magnetic field strength.Materials and methods. Among several available methods for measuring pulsed magnetic field parameters, the induction method was selected. To obtain a signal proportional to the pulsed magnetic field strength, a signal from the induction transducer is integrated using a self-integrating induction transducer (RL integration) or by using an external RC integrator. The former method shows good results when measuring signals with a duration of hundreds of ns; however, this method is inefficient when measuring the parameters of longer-duration pulses. The latter method is used to determine the parameters of signals with a duration of hundreds of Β΅s and ms; however, this method gives a large error when measuring the parameters of signals with a duration of hundreds of ns and less. The consecutive use of the two integration methods leads to an additional error in the measurement of the pulse duration to its half-drop.Results. A setup for determining the required magnetic field pulse parameters using a pulse magnetic field meter based on an RL integrator was developed. The relative measurement errors comprised 10, 10, and 9 %, respectively. The developed setup eliminates the error caused by losses in the active resistance of an induction transducer, thus enabling the pulse duration to its half-droop to be measured without additional errors under the pulse rise time of hundreds of ns and the pulse droop time of hundreds of Β΅s.Conclusion. The development of a functional converter made it possible to extend the frequency response of a pulsed magnetic field meter based on an RL integrator to the low-frequency region.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… областях соврСмСнной Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ измСрСния Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎ-Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… характСристик ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля. Π’Π°ΠΊΠΈΠ΅ измСрСния проводят ΠΏΡ€ΠΈ испытаниях Π½Π° ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΌΡƒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌΡƒ полю, ΠΏΡ€ΠΈ этом Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ„Ρ€ΠΎΠ½Ρ‚Π° ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля составляСт сотни наносСкунд, Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π΄ΠΎ полуспада – сотни микросСкунд.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° измСритСля напряТСнности ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ характСристикой прСобразования, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ измСрСния Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Ρ€ΠΎΠ½Ρ‚Π°, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π΄ΠΎ полуспада ΠΈ ΠΏΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ значСния напряТСнности ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля сущСствуСт нСсколько ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π²Ρ‹Π±Ρ€Π°Π½ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. Для получСния сигнала, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ напряТСнности ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, сигнал с ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ прСобразоватСля ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΡŽΡ‚ с использованиСм ΡΠ°ΠΌΠΎΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ прСобразоватСля (RL-ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅) ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ внСшнСго RC-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€Π°. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ способ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ сигналов Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ сотни наносСкунд, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΄Π°Π΅Ρ‚ ΠΏΠ»ΠΎΡ…ΠΎΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ². Π’Ρ‚ΠΎΡ€ΠΎΠΉ способ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ для опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сигналов Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ сотни ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ миллисСкунд, Π΄Π°Π½Π½Ρ‹ΠΉ способ Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сигналов Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ сотни наносСкунд ΠΈ мСньшС. ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ использованиС Π΄Π²ΡƒΡ… способов интСгрирования ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ возникновСнию Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π΄ΠΎ полуспада.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ΠΎ устройство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ измСритСля ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π½Π° основС RL-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля с ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡΠΌΠΈ 10, 10 ΠΈ 9 % соотвСтствСнно. Π”Π°Π½Π½ΠΎΠ΅ устройство устраняСт ΠΎΡˆΠΈΠ±ΠΊΡƒ, Π²Ρ‹Π·Π²Π°Π½Π½ΡƒΡŽ потСрями Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ сопротивлСнии ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ прСобразоватСля, Ρ‡Ρ‚ΠΎ позволяСт провСсти ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π΄ΠΎ полуспада Π±Π΅Π· Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ Π² условиях, ΠΊΠΎΠ³Π΄Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ„Ρ€ΠΎΠ½Ρ‚Π° ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° составляСт сотни наносСкунд, Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ спада ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° – сотни микросСкунд.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСобразоватСля ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ Ρ‡Π°ΡΡ‚ΠΎΡ‚Π½ΡƒΡŽ характСристику измСритСля ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π½Π° основС RL-ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€Π° Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½ΠΈΠ·ΠΊΠΈΡ… частот
    • …
    corecore