17 research outputs found

    Optimizing transcranial magnetic stimulation for spaceflight applications

    Get PDF
    As space agencies aim to reach and build installations on Mars, the crews will face longer exposure to extreme environments that may compromise their health and performance. Transcranial magnetic stimulation (TMS) is a painless non-invasive brain stimulation technique that could support space exploration in multiple ways. However, changes in brain morphology previously observed after long-term space missions may impact the efficacy of this intervention. We investigated how to optimize TMS for spaceflight-associated brain changes. Magnetic resonance imaging T1-weighted scans were collected from 15 Roscosmos cosmonauts and 14 non-flyer participants before, after 6 months on the International Space Station, and at a 7-month follow-up. Using biophysical modeling, we show that TMS generates different modeled responses in specific brain regions after spaceflight in cosmonauts compared to the control group. Differences are related to spaceflight-induced structural brain changes, such as those impacting cerebrospinal fluid volume and distribution. We suggest solutions to individualize TMS to enhance its efficacy and precision for potential applications in long-duration space missions. © 2023, The Author(s)

    Frequency-Dependent Reduction of Cybersickness in Virtual Reality by Transcranial Oscillatory Stimulation of the Vestibular Cortex

    Get PDF
    Virtual reality (VR) applications are pervasive of everyday life, as in working, medical, and entertainment scenarios. There is yet no solution to cybersickness (CS), a disabling vestibular syndrome with nausea, dizziness, and general discomfort that most of VR users undergo, which results from an integration mismatch among visual, proprioceptive, and vestibular information. In a double-blind, controlled trial, we propose an innovative treatment for CS, consisting of online oscillatory imperceptible neuromodulation with transcranial alternating current stimulation (tACS) at 10 Hz, biophysically modelled to reach the vestibular cortex bilaterally. tACS significantly reduced CS nausea in 37 healthy subjects during a VR rollercoaster experience. The effect was frequency-dependent and placebo-insensitive. Subjective benefits were paralleled by galvanic skin response modulation in 25 subjects, addressing neurovegetative activity. Besides confirming the role of transcranially delivered oscillations in physiologically tuning the vestibular system function (and dysfunction), results open a new way to facilitate the use of VR in different scenarios and possibly to help treating also other vestibular dysfunctions

    The effect of HD-tDCS on brain oscillations and frontal synchronicity during resting-state EEG in violent offenders with a substance dependence

    Get PDF
    Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.</p

    The effect of HD-tDCS on brain oscillations and frontal synchronicity during resting-state EEG in violent offenders with a substance dependence

    Get PDF
    Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.</p

    Targeting neural correlates of placebo effects

    No full text
    Harnessing the placebo effects would prompt critical ramifications for research and clinical practice. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and multifocal transcranial electric stimulation, could manipulate the placebo response by modulating the activity and excitability of its neural correlates. To identify potential stimulation targets, we conducted a meta-analysis to investigate placebo-associated regions in healthy volunteers, including studies with emotional components and painful stimuli. Using biophysical modeling, we identified NIBS solutions to manipulate placebo effects by targeting either a single key region or multiple connected areas. Moving to a network-oriented approach, we then ran a quantitative network mapping analysis on the functional connectivity profile of clusters emerging from the meta-analysis. As a result, we&nbsp;suggest a multielectrode optimized montage engaging the connectivity patterns of placebo-associated functional brain&nbsp;networks. These NIBS solutions hope to provide a starting point to actively control, modulate&nbsp;or enhance placebo effects in future clinical studies and cognitive enhancement studies. © 2022, The Psychonomic Society, Inc

    Noninvasive brain stimulation & space exploration: opportunities and challenges

    No full text
    As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts’ health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods — including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) — to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition. © 2020 Published by Elsevier Lt

    Mindfulness-based stress reduction training modulates striatal and cerebellar connectivity

    No full text
    Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a “mind-wandering” and a “meditation” state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception

    Feasibility of TMS in patients with new generation cochlear implants

    No full text
    Objective: The presence of a cochlear implant is being considered an absolute contraindication for experiments and/or treatments. We aimed to verify TMS (Transcranial Magnetic Stimulation) compatibility of a new generation of cochlear implants. Methods: In a series of experiments, we test if MED-EL cochlear implants -compatible with stable fields of magnetic resonance imaging scanning- are fully resistant even to rapidly varying magnetic fields as those generated by single pulses and low and high-frequency trains of repetitive TMS (rTMS) applied with a figure of eight coil and different magnetic stimulators. Results: With a TMS intensity equal or below 2.2 Tesla (T) the cochlear implant and all its electronic components remain fully functional, even when the combination of frequency, intensity and number of pulses exceeds the currently available safety guidelines. Induced forces on the implant are negligible. With higher magnetic fields (i.e., 3.2 T), one device was corrupted. Conclusions: Results exclude the risk of electronic damaging, demagnetizing or displacements of the studied cochlear implants when exposed to magnetic fields of up to 2.2 T delivered through a focal coil. Significance: They open the way to use focal rTMS protocols with the aim of promoting neural plasticity in auditory networks, possibly helping the post-implant recovery of speech perception performance. © 2021 International Federation of Clinical Neurophysiolog
    corecore