3 research outputs found

    Cadomian metabasites of the Eastern Pyrenees revisited

    Full text link
    This study presents a new geochemical, petrological, and geochronological U-Pb dataset from Ediacaran metabasites of the CanigĂł and Cap de Creus massifs, Eastern Pyrenees. The rocks are composed of calcic amphibole + plagioclase + chlorite + epidote ± quartz plus titanite + apatite + ilmenite ± biotite ± rutile as accessory phases and show relict igneous textures. Peak pressure-temperature determinations share common conditions, ranging 452-482ÂșC and 5.2-7.7kbar. These intermediate P-T conditions suggest Barrovian-type metamorphism, most likely related to a collisional setting. The metabasites correspond to evolved basaltic rocks (Mg#<0.55) with moderate TiO2 content (up to 2.08wt.%) and relatively low Cr (43-416ppm). The rocks are moderately enriched in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) (average (La/Lu)n of 2.7) and the N-MORB normalized multi-element patterns show negative slopes, with prominent negative Nb anomalies ((Nb/La)NMORB=0.33-0.78). These variations are akin to island arc tholeiites generated in back-arc basins and to other metabasites described in the Eastern Pyrenees with a putative Ediacaran age, and they differ from the Ordovician tholeiitic metabasites from the CanigĂł massif, which derived from a contaminated E-MORB source. The positive ƐNd(T) values (0.82-3.05) of the studied metabasites preclude a notable contribution from an older continental crust. U-Pb dating (LA-ICP-MS) of one chlorite-rich schist sample in contact with the metabasites from the CanigĂł massif yielded a main peak at ca. 632Ma. We argue that the Cadomian metabasites from the Pyrenees formed during back-arc extension in the continental margin of Gondwana and were later affected by (probably early Variscan) medium-P metamorphism before the HT-LP metamorphism classically described in the Pyrenees

    The Discovery of the Romero VMS Deposit and Its Bearing on the Metallogenic Evolution of Hispaniola during the Cretaceous

    Get PDF
    The recently discovered Romero deposit, located in the Tres Palmas district, Cordillera Central of the Dominican Republic, has probable reserves of 840,000 oz gold, 980,000 oz silver and 136 Mlb copper. Mineralization is hosted by intermediate volcanic and volcaniclastic rocks of the lower stratigraphic sequence of the Cretaceous Tireo formation. The andesitic host rocks yield a U-Pb zircon concordia age of 116 ± 10 Ma. Au-Ag-Cu(-Zn) mineralization is divided into: (1) an upper domain with stacked massive sulfide lenses and sulfide dissemination within a 20-m-thick level of massive anhydrite-gypsum nodules, and (2) a lower domain with a high-grade stockwork mineralization in the form of cm-scale veins with open space fillings of fibrous silica and chalcopyrite, sphalerite, pyrite (+electrum ± Au-Ag tellurides). The ÎŽ34S values of sulfides from the upper (−7.6 and +0.9 ) and lower (−2.4 and +5.6 ) domains are consistent with a heterogeneous sourcing of S, probably combining inorganically and organically induced reduction of Albian-Aptian seawater sulfate. Despite this, a magmatic source for sulfur cannot be discarded. The ÎŽ34S (+19.2 and +20.0 ) and ÎŽ18O (+12.5 and +14.2 ) values of anhydrite-gypsum nodules are also consistent with a seawater sulfate source and suggest crystallization in equilibrium with aqueous sulfides at temperatures higher than 250 °C. These data point to a classification of Romero as a volcanogenic massive sulfide (VMS) deposit formed in an axial position of the Greater Antilles paleo-arc in connection with island arc tholeiitic magmatism during a steady-state subduction regime. Circulation of hydrothermal fluids could have been promoted by a local extensional tectonic regime expressed in the Tres Palmas district as a graben structure

    Fe-Ti-Zr metasomatism in the oceanic mantle due to extreme differentiation of tholeiitic melts (Moa-Baracoa ophiolite, Cuba)

    No full text
    Ti-rich amphibole, Mg-rich ilmenite, baddeleyite, zirconolite, srilankite, and zircon are important high-field-strength elements (HFSE) bearing phases in the Potosí chromitite bodies located in the Moho Transition Zone of the Cretaceous Moa-Baracoa suprasubduction zone ophiolite (eastern Cuba). Such HFSE-bearing phases were found in the interaction zone between gabbroic intrusions and chromitite pods. In addition to HFSE-bearing minerals, the studied samples are composed of Fe3+ and Ti-rich chromite, olivine (Fo86-90), clinopyroxene (En44-49), plagioclase (An51-56), orthopyroxene (En84-94), F-rich apatite, and Fe-Cu-Ni sulfides. The studied ilmenite hosting Zr oxides (baddeleyite, zirconolite, and srilankite) contains up to 13 wt.% MgO. The Potosí zirconolite is the first record of this mineral in ophiolitic chromitites and non-metamorphic ophiolite units, and it has relatively high REE contents (up to 10 wt.% of REE2O3) and the highest concentrations in Y2O3 (up to 11 wt.%) reported so far in zirconolite from terrestrial occurrences. Zircon is observed forming coronas surrounding ilmenite grains in contact with silicate minerals, and is characterized by very low U and Pb contents. The zircons formed after high temperature Zr diffusion in ilmenite (exsolution) and a subsequent reaction along grain boundaries following crystallization. Finally, U-Pb dating of baddeleyite exsolutions within ilmenite yielded an average age of 134.4 ± 14 Ma, which provides the first ever dating for a metasomatic event in Potosí that matches well (within uncertainty) the formation age of the oceanic crust of the eastern Cuba ophiolite. We propose that the occurrence of HFSE- and REE-bearing minerals in the Potosí chromite deposit is the result of a two stage process: first, water-rich and HFSE-rich residual melts are produced by intercumulus crystal fractionation after an evolved MORB (BABB)-like melt; and secondly, these residual melt fractions escaped the solidifying mush and extensively reacted and metasomatized the surrounding chromitites, crystallizing HFSE- and REE-bearing minerals and Fe-Cu-Ni sulfides
    corecore