12 research outputs found

    Phosphatidylinositol Transfer Protein, Cytoplasmic 1 (PITPNC1) Binds and Transfers Phosphatidic Acid

    Get PDF
    Phosphatidylinositol transfer proteins (PITPs) are versatile proteins required for signal transduction and membrane traffic. The best characterized mammalian PITPs are the Class I PITPs, PITPα (PITPNA) and PITPβ (PITPNB), which are single domain proteins with a hydrophobic cavity that binds a phosphatidylinositol (PI) or phosphatidylcholine molecule. In this study, we report the lipid binding properties of an uncharacterized soluble PITP, phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) (alternative name, RdgBβ), of the Class II family. We show that the lipid binding properties of this protein are distinct to Class I PITPs because, besides PI, RdgBβ binds and transfers phosphatidic acid (PA) but hardly binds phosphatidylcholine. RdgBβ when purified from Escherichia coli is preloaded with PA and phosphatidylglycerol. When RdgBβ was incubated with permeabilized HL60 cells, phosphatidylglycerol was released, and PA and PI were now incorporated into RdgBβ. After an increase in PA levels following activation of endogenous phospholipase D or after addition of bacterial phospholipase D, binding of PA to RdgBβ was greater at the expense of PI binding. We propose that RdgBβ, when containing PA, regulates an effector protein or can facilitate lipid transfer between membrane compartments

    Dia2 Controls Transcription by Mediating Assembly of the RSC Complex

    Get PDF
    Background: Dia2 is an F-box protein found in the budding yeast, S. cerevisiae. Together with Skp1 and Cul1, Dia2 forms the substrate-determining part of an E3 ubiquitin ligase complex, otherwise known as the SCF. Dia2 has previously been implicated in the control of replication and genome stability via its interaction with the replisome progression complex. Principal Findings: We identified components of the RSC chromatin remodelling complex as genetic interactors with Dia2, suggesting an additional role for Dia2 in the regulation of transcription. We show that Dia2 is involved in controlling assembly of the RSC complex. RSC belongs to a group of ATP-dependent nucleosome-remodelling complexes that controls the repositioning of nucleosomes. The RSC complex is expressed abundantly and its 17 subunits are recruited to chromatin in response to both transcription activation and repression. In the absence of Dia2, RSC-mediated transcription regulation was impaired, with concomitant abnormalities in nucleosome positioning. Conclusions: Our findings imply that Dia2 is required for the correct assembly and function of the RSC complex. Dia2, by controlling the RSC chromatin remodeller, fine-tunes transcription by controlling nucleosome positioning during transcriptional activation and repression

    Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae

    No full text
    Glycerophosphocholine is formed via the deacylation of the phospholipid phosphatidylcholine. The protein encoded by Saccharomyces cerevisiae open reading frame YPL110c effects glycerophosphocholine metabolism in vivo, most likely by acting as a glycerophosphocholine phosphodiesterase. Deletion of YPL110c causes an accumulation of glycerophosphocholine in cells prelabeled with [14C]choline. Correspondingly, overexpression of YPL110c results in reduced intracellular glycerophosphocholine in cells prelabeled with [ 14C]choline. Glycerophospho[3H]choline supplied in the growth medium accumulates to a much greater extent in the intracellular fraction of a YPL110Δ, strain than in a wild type strain. Furthermore, glycerophospho[3H]choline accumulation requires the transporter encoded by GIT1, a known glycerophosphoinositol transporter. Growth on glycerophosphocholine as the sole phosphate source requires YPL110c and the Git1p permease. In contrast to glycerophosphocholine, glycerophosphoinositol metabolism is unaffected by deletion of YPL110c. The open reading frame YPL110c has been termed GDE1. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc

    Yarrowia lipolytica as a Platform for Punicic Acid Production

    No full text
    International audiencePunicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production

    The CDK Subunit CKS2 Counteracts CKS1 to Control Cyclin A/CDK2 Activity in Maintaining Replicative Fidelity and Neurodevelopment

    Get PDF
    SummaryCKS proteins are evolutionarily conserved cyclin-dependent kinase (CDK) subunits whose functions are incompletely understood. Mammals have two CKS proteins. CKS1 acts as a cofactor to the ubiquitin ligase complex SCFSKP2 to promote degradation of CDK inhibitors, such as p27. Little is known about the role of the closely related CKS2. Using a Cks2−/− knockout mouse model, we show that CKS2 counteracts CKS1 and stabilizes p27. Unopposed CKS1 activity in Cks2−/− cells leads to loss of p27. The resulting unrestricted cyclin A/CDK2 activity is accompanied by shortening of the cell cycle, increased replication fork velocity, and DNA damage. In vivo, Cks2−/− cortical progenitor cells are limited in their capacity to differentiate into mature neurons, a phenotype akin to animals lacking p27. We propose that the balance between CKS2 and CKS1 modulates p27 degradation, and with it cyclin A/CDK2 activity, to safeguard replicative fidelity and control neuronal differentiation

    Cks1 Activates Transcription by Binding to the Ubiquitylated Proteasome â–¿

    No full text
    Cyclin-dependent kinase-associated protein 1 (Cks1) is involved in the control of the transcription of a subset of genes in addition to its role in controlling the cell cycle in the budding yeast Saccharomyces cerevisiae. By directly ligating Cks1 onto a GAL1 promoter-driven reporter, we demonstrated that Cks1 acts as a transcription activator. Using this method, we dissected the downstream events from Cks1 recruitment at the promoter. We showed that subsequent to promoter binding, Cdc28 binding is required to modulate the level of gene expression. The ubiquitin-binding domain of Cks1 is essential for implementing downstream transcription events, which appears to recruit the proteasome via ubiquitylated proteasome subunits. We propose that the selective ability of Cks1 to bind ubiquitin allows this small molecule the flexibility to bind large protein complexes with specificity and that this may represent a novel mechanism of regulating transcriptional activation

    Defining the Functional Interactome of Spliceosome-Associated G-Patch Protein Gpl1 in the Fission Yeast Schizosaccharomyces pombe

    No full text
    Pre-mRNA splicing plays a fundamental role in securing protein diversity by generating multiple transcript isoforms from a single gene. Recently, it has been shown that specific G-patch domain-containing proteins are critical cofactors involved in the regulation of splicing processes. In this study, using the knock-out strategy, affinity purification and the yeast-two-hybrid assay, we demonstrated that the spliceosome-associated G-patch protein Gpl1 of the fission yeast S. pombe mediates interactions between putative RNA helicase Gih35 (SPAC20H4.09) and WD repeat protein Wdr83, and ensures their binding to the spliceosome. Furthermore, RT-qPCR analysis of the splicing efficiency of deletion mutants indicated that the absence of any of the components of the Gpl1-Gih35-Wdr83 complex leads to defective splicing of fet5 and pwi1, the reference genes whose unspliced isoforms harboring premature stop codons are targeted for degradation by the nonsense-mediated decay (NMD) pathway. Together, our results shed more light on the functional interactome of G-patch protein Gpl1 and revealed that the Gpl1-Gih35-Wdr83 complex plays an important role in the regulation of pre-mRNA splicing in S. pombe
    corecore