109 research outputs found

    Cooperativity in light scattering by cold atoms

    Full text link
    A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.Comment: 15 pages, 8 figure

    Intensity fluctuations signature of 3D Anderson localization of light

    Full text link
    Apart from the difficulty of producing highly scattering samples, a major challenge in the observation of Anderson localization of 3D light is identifying an unambiguous signature of the phase transition in experimentally feasible situations. In this letter we establish a clear correspondence between the collapse of the conductance, the increase in intensity fluctuations at the localization transition and the scaling analysis results based on the Thouless number, thus connecting the macroscopic and microscopic approaches of localization. Furthermore, the transition thus inferred is fully compatible both with the results based on the eigenvalue analysis of the microscopic description and with the effective-medium Ioffe-Regel criterion

    Spatial and temporal localization of light in two dimensions

    Full text link
    Quasi-resonant scattering of light in two dimensions can be described either as a scalar or as a vectorial electromagnetic wave. Performing a scaling analysis we observe in both cases long lived modes, yet only the scalar case exhibits Anderson localized modes together with extremely long mode lifetimes. We show that the localization length of these modes is influenced only by their position, and not their lifetime. Investigating the reasons for the absence of localization, it appears that both the coupling of several polarizations and the presence of near-field terms are able to prevent long lifetimes and Anderson localization.Comment: 5 pages, 4 figures and Supplementary Informatio

    Role of disorder in super- and subradiance of cold atomic clouds

    Full text link
    The presence of superradiance and subradiance in microscopic and mean-field approaches to light scattering in atomic media is investigated. We show that these phenomena are present in both descriptions, with only minor quantitative differences, so neither rely on disorder. In particular, they are most prominent in media with high resonant optical depth yet far-detuned light, i.e.. in the single--scattering regime

    Coherence effects in scattering order expansion of light by atomic clouds

    Get PDF
    We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of NN atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.Comment: 10 pages, 6 figure

    Quantum effects in the cooperative scattering of light by atomic clouds

    Get PDF
    Scattering of classical light by atomic clouds induces photon-mediated effective long-range interactions between the atoms and leads to cooperative effects even at low atomic densities. We introduce a novel simulation technique that allows us to investigate the quantum regime of the dynamics of large clouds of atoms. We show that the fluorescence spectrum of the cloud can be used to probe genuine quantum cooperative effects. Signatures of these effects are the occurrence, and the scaling behavior, of additional sidebands at twice the frequency of the classical Mollow sidebands, as well as an asymmetry of the Mollow triplet
    • …
    corecore