5 research outputs found

    Rôle de l'Annexine-A5 dans la réparation membranaire du muscle strié squelettique et du placenta humains

    Get PDF
    Plasma membrane is the supramolecular assembly that delimits the cell. It is a thin, dynamic and complex structure, ensuring multiple and vital cell functions. Its disruption is a physiological event occurring in cells submitted to frequent mechanical stresses, such as endothelial cells, epithelial cells and muscle cells. It is also a physiological event for cells exposed to pore forming bacterial toxins (PFTs). Membrane repair mechanisms and associated protein machinery are still poorly understood. This knowledge is, however, essential for obvious physiopathological issues. Indeed, a defect of membrane repair in muscle cells leads to some muscular dystrophies. Membrane repair machinery includes proteins such as dysferlin, MG-53, caveolin-3 and some Annexins (Anx). Anx belong to a superfamily of proteins widely spread in most of eukaryotes, which share the property of binding to biological membranes in the presence of calcium (Ca2+). Here, we investigated the role of AnxA5 in cell membrane repair of human trophoblastic and skeletal muscle cells. We showed that AnxA5 is required for membrane repair of mechanical damages in the two cell types. By combining fluorescence and transmission electron microscopy approaches, we evidenced that membrane repair mechanism in these cells is based on the formation of a lipid “patch”. In human muscle cells, TEM experiments revealed that a pool of endogenous AnxA5 binds to the edges of the torn sarcolemma as soon as a few seconds after membrane disruption. Our results suggest the following mechanism: triggered by the local increase in Ca2+ concentration, AnxA5 molecules bind to PS exposed at the edges of the torn membrane, where they self-assemble into 2D arrays. The formation of 2D arrays strengthens the damaged sarcolemma, counteracts the tensions exerted by the cortical cytoskeleton and thus prevents the expansion of the tear. We showed also that a pool of endogenous AnxA5 binds to intracellular vesicles that obstruct the wounding site. It is likely these vesicles, once associated one to each other, ensure membrane resealing. Our results suggest that sarcolemma repair of damages caused by PFTs is independent of AnxA5. Therefore, different membrane repair mechanisms may exist, their occurrence probably depending on the type and/or the size of damages. Finally, we performed studies on muscle cells established from patients diagnosed with limb girdle muscular dystrophies type 2B (dysferlin-deficient) and 1C (caveolin-3-deficient), respectively. We found that dysferlin or caveolin-3 deficiency leads to a defect of membrane repair, in the case of mechanical damages. AnxA5 behaved similarly in these damaged cells and wild-type cells, suggesting that its function is independent of dysferlin or caveolin-3. Unlike dysferlin-deficient cells, damages created by PFTs are efficiently repaired in caveolin- 3-deficient cells. This result supports the hypothesis that different mechanisms occur in muscle cells, depending on the type of damage. In conclusion, this work indicates that AnxA5 is a key component of the membrane repair machinery, in the case of mechanical disruptions. Our results enable to propose a detailed mode of action for AnxA5.La membrane plasmique est un assemblage supramoléculaire qui délimite la cellule. C’est une structure fine, complexe et dynamique assurant des fonctions multiples et vitales pour la cellule. Sa rupture est un évènement physiologique pour les cellules soumises à des stress mécaniques fréquents et/ou importants, comme les cellules épithéliales, les cellules endothéliales ou les cellules musculaires. Dans des conditions physiopathologiques, la membrane plasmique peut également être endommagée par l’insertion de toxines bactériennes formant des pores (PFTs, pour « pore forming toxins »). Le processus de réparation membranaire et la machinerie protéique associée sont encore mal connus. Connaître les partenaires protéiques et comprendre les mécanismes mis en jeu durant le processus de réparation de la membrane plasmique sont deux enjeux fondamentaux majeurs. En effet, il a été établi qu’une défaillance du processus de réparation membranaire pour les fibres musculaires est la cause principale de certaines dystrophies musculaires. La machinerie protéique de réparation comprend des protéines comme la dysferline, la cavéoline-3 et certaines Annexines (Anx). Les Anx appartiennent à une superfamille de protéines répandue chez la plupart des eucaryotes, qui ont la propriété commune de se lier aux membranes biologiques en présence de calcium (Ca2+). Certaines Anx, comme l’AnxA5, une fois liées aux membranes biologiques s’auto-assemblent spontanément en réseau-2D. Lors de ce travail de thèse, nous avons étudié le rôle de l’AnxA5 dans la réparation membranaire des trophoblastes placentaires et des cellules du muscle squelettique humain. Pour les deux types cellulaires, nous avons montré que l’AnxA5 est un acteur indispensable du processus de réparation membranaire dans le cas de ruptures mécaniques. En associant des approches de microscopie de fluorescence et de microscopie électronique à transmission (MET), nous avons mis en évidence que dans ces cellules, le mécanisme de réparation est principalement basé sur la formation d’un « patch » lipidique. Dans les cellules musculaires, les expériences de MET ont mis en évidence qu’un pool d’AnxA5 endogène se lie aux bords du site de rupture quelques secondes après la lésion du sarcolemme. Ceci suggère qu’après rupture de la membrane plasmique, l’augmentation locale de la concentration calcique intracellulaire provoque la liaison de l’AnxA5 spécifiquement aux bords de la région membranaire lésée où elle forme un réseau-2D. Le réseau-2D stabiliserait localement la membrane et préviendrait sa déchirure, induite par les forces de tensions exercées par le cytosquelette cortical. Nous avons également montré que l’AnxA5 ne semble pas impliquée dans la réparation de la membrane plasmique après insertion de PFTs. Ceci suggère que différents mécanismes de réparation existent et que leur mise en place dépend probablement du type ou de l’importance des dommages. Finalement nous avons étendu notre étude à des lignées cellulaires établies à partir de patients diagnostiqués comme souffrant de dystrophies des ceintures de type 2B (déficience en dysferline) et 1C (déficience en cavéoline-3), respectivement. Nous avons montré, pour ces lignées, que la déficience en dysferline ou cavéoline-3 provoque un défaut de réparation dans le cas des ruptures mécaniques de la membrane plasmique. Dans ces cellules musculaires pathologiques intactes ou endommagées, l’AnxA5 a le même comportement, ce qui suggère que l’action de l’AnxA5 est indépendante de ces protéines. A la différence des cellules déficientes en dysferline, nous avons observé que les cellules déficientes en cavéoline-3 sont capables de réparer efficacement des lésions créées par l’insertion de PFTs dans le sarcolemme. Ce résultat supporte l’hypothèse de l’existence de plusieurs mécanismes de réparation. En conclusion, ce travail montre que l’AnxA5 est un composant clé de la machinerie de réparation dans le cas des ruptures mécaniques

    Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies

    Get PDF
    Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies

    Role of Annexin-A5 in cell membrane repair in human skeletal muscle and placenta

    No full text
    La membrane plasmique est un assemblage supramoléculaire qui délimite la cellule. C’est une structure fine, complexe et dynamique assurant des fonctions multiples et vitales pour la cellule. Sa rupture est un évènement physiologique pour les cellules soumises à des stress mécaniques fréquents et/ou importants, comme les cellules épithéliales, les cellules endothéliales ou les cellules musculaires. Dans des conditions physiopathologiques, la membrane plasmique peut également être endommagée par l’insertion de toxines bactériennes formant des pores (PFTs, pour « pore forming toxins »). Le processus de réparation membranaire et la machinerie protéique associée sont encore mal connus. Connaître les partenaires protéiques et comprendre les mécanismes mis en jeu durant le processus de réparation de la membrane plasmique sont deux enjeux fondamentaux majeurs. En effet, il a été établi qu’une défaillance du processus de réparation membranaire pour les fibres musculaires est la cause principale de certaines dystrophies musculaires. La machinerie protéique de réparation comprend des protéines comme la dysferline, la cavéoline-3 et certaines Annexines (Anx). Les Anx appartiennent à une superfamille de protéines répandue chez la plupart des eucaryotes, qui ont la propriété commune de se lier aux membranes biologiques en présence de calcium (Ca2+). Certaines Anx, comme l’AnxA5, une fois liées aux membranes biologiques s’auto-assemblent spontanément en réseau-2D. Lors de ce travail de thèse, nous avons étudié le rôle de l’AnxA5 dans la réparation membranaire des trophoblastes placentaires et des cellules du muscle squelettique humain. Pour les deux types cellulaires, nous avons montré que l’AnxA5 est un acteur indispensable du processus de réparation membranaire dans le cas de ruptures mécaniques. En associant des approches de microscopie de fluorescence et de microscopie électronique à transmission (MET), nous avons mis en évidence que dans ces cellules, le mécanisme de réparation est principalement basé sur la formation d’un « patch » lipidique. Dans les cellules musculaires, les expériences de MET ont mis en évidence qu’un pool d’AnxA5 endogène se lie aux bords du site de rupture quelques secondes après la lésion du sarcolemme. Ceci suggère qu’après rupture de la membrane plasmique, l’augmentation locale de la concentration calcique intracellulaire provoque la liaison de l’AnxA5 spécifiquement aux bords de la région membranaire lésée où elle forme un réseau-2D. Le réseau-2D stabiliserait localement la membrane et préviendrait sa déchirure, induite par les forces de tensions exercées par le cytosquelette cortical. Nous avons également montré que l’AnxA5 ne semble pas impliquée dans la réparation de la membrane plasmique après insertion de PFTs. Ceci suggère que différents mécanismes de réparation existent et que leur mise en place dépend probablement du type ou de l’importance des dommages. Finalement nous avons étendu notre étude à des lignées cellulaires établies à partir de patients diagnostiqués comme souffrant de dystrophies des ceintures de type 2B (déficience en dysferline) et 1C (déficience en cavéoline-3), respectivement. Nous avons montré, pour ces lignées, que la déficience en dysferline ou cavéoline-3 provoque un défaut de réparation dans le cas des ruptures mécaniques de la membrane plasmique. Dans ces cellules musculaires pathologiques intactes ou endommagées, l’AnxA5 a le même comportement, ce qui suggère que l’action de l’AnxA5 est indépendante de ces protéines. A la différence des cellules déficientes en dysferline, nous avons observé que les cellules déficientes en cavéoline-3 sont capables de réparer efficacement des lésions créées par l’insertion de PFTs dans le sarcolemme. Ce résultat supporte l’hypothèse de l’existence de plusieurs mécanismes de réparation. En conclusion, ce travail montre que l’AnxA5 est un composant clé de la machinerie de réparation dans le cas des ruptures mécaniques.Plasma membrane is the supramolecular assembly that delimits the cell. It is a thin, dynamic and complex structure, ensuring multiple and vital cell functions. Its disruption is a physiological event occurring in cells submitted to frequent mechanical stresses, such as endothelial cells, epithelial cells and muscle cells. It is also a physiological event for cells exposed to pore forming bacterial toxins (PFTs). Membrane repair mechanisms and associated protein machinery are still poorly understood. This knowledge is, however, essential for obvious physiopathological issues. Indeed, a defect of membrane repair in muscle cells leads to some muscular dystrophies. Membrane repair machinery includes proteins such as dysferlin, MG-53, caveolin-3 and some Annexins (Anx). Anx belong to a superfamily of proteins widely spread in most of eukaryotes, which share the property of binding to biological membranes in the presence of calcium (Ca2+). Here, we investigated the role of AnxA5 in cell membrane repair of human trophoblastic and skeletal muscle cells. We showed that AnxA5 is required for membrane repair of mechanical damages in the two cell types. By combining fluorescence and transmission electron microscopy approaches, we evidenced that membrane repair mechanism in these cells is based on the formation of a lipid “patch”. In human muscle cells, TEM experiments revealed that a pool of endogenous AnxA5 binds to the edges of the torn sarcolemma as soon as a few seconds after membrane disruption. Our results suggest the following mechanism: triggered by the local increase in Ca2+ concentration, AnxA5 molecules bind to PS exposed at the edges of the torn membrane, where they self-assemble into 2D arrays. The formation of 2D arrays strengthens the damaged sarcolemma, counteracts the tensions exerted by the cortical cytoskeleton and thus prevents the expansion of the tear. We showed also that a pool of endogenous AnxA5 binds to intracellular vesicles that obstruct the wounding site. It is likely these vesicles, once associated one to each other, ensure membrane resealing. Our results suggest that sarcolemma repair of damages caused by PFTs is independent of AnxA5. Therefore, different membrane repair mechanisms may exist, their occurrence probably depending on the type and/or the size of damages. Finally, we performed studies on muscle cells established from patients diagnosed with limb girdle muscular dystrophies type 2B (dysferlin-deficient) and 1C (caveolin-3-deficient), respectively. We found that dysferlin or caveolin-3 deficiency leads to a defect of membrane repair, in the case of mechanical damages. AnxA5 behaved similarly in these damaged cells and wild-type cells, suggesting that its function is independent of dysferlin or caveolin-3. Unlike dysferlin-deficient cells, damages created by PFTs are efficiently repaired in caveolin- 3-deficient cells. This result supports the hypothesis that different mechanisms occur in muscle cells, depending on the type of damage. In conclusion, this work indicates that AnxA5 is a key component of the membrane repair machinery, in the case of mechanical disruptions. Our results enable to propose a detailed mode of action for AnxA5

    Actin and an unconventional myosin motor, TgMyoF, control the organization and dynamics of the endomembrane network in Toxoplasma gondii.

    No full text
    Toxoplasma gondii is an obligate intracellular parasite that relies on three distinct secretory organelles, the micronemes, rhoptries, and dense granules, for parasite survival and disease pathogenesis. Secretory proteins destined for these organelles are synthesized in the endoplasmic reticulum (ER) and sequentially trafficked through a highly polarized endomembrane network that consists of the Golgi and multiple post-Golgi compartments. Currently, little is known about how the parasite cytoskeleton controls the positioning of the organelles in this pathway, or how vesicular cargo is trafficked between organelles. Here we show that F-actin and an unconventional myosin motor, TgMyoF, control the dynamics and organization of the organelles in the secretory pathway, specifically ER tubule movement, apical positioning of the Golgi and post-Golgi compartments, apical positioning of the rhoptries, and finally, the directed transport of Rab6-positive and Rop1-positive vesicles. Thus, this study identifies TgMyoF and actin as the key cytoskeletal components that organize the endomembrane system in T. gondii

    Membrane repair of human skeletal muscle cells requires Annexin-A5

    No full text
    Defect in membrane repair contributes to the development of limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. In healthy skeletal muscle, unraveling membrane repair mechanisms requires to establish an exhaustive list of the components of the resealing machinery. Here we show that human myotubes rendered deficient for Annexin-A5 (AnxA5) suffer from a severe defect in membrane resealing. This defect is rescued by the addition of recombinant AnxA5 while an AnxA5 mutant, which is unable to form 2D protein arrays, has no effect. Using correlative light and electron microscopy, we show that AnxA5 binds to the edges of the torn membrane, as early as a few seconds after sarcolemma injury, where it probably self-assembles into 2D arrays. In addition, we observed that membrane resealing is associated with the presence of a cluster of lipid vesicles at the wounded site. AnxA5 is present at the surface of these vesicles and may thus participate in plugging the cell membrane disruption. Finally, we show that AnxA5 behaves similarly in myotubes from a muscle cell line established from a patient suffering from LGMD2B, a myopathy due to dysferlin mutations, which indicates that trafficking of AnxA5 during sarcolemma damage is independent of the presence of dysferlin. (C) 2016 Elsevier B.V. All rights reserved
    corecore