56 research outputs found

    Outcome of liver transplantation with grafts from brain-dead donors treated with dual hypothermic oxygenated machine perfusion, with particular reference to elderly donors

    Get PDF
    Prompted by the utilization of extended criteria donors, dual hypothermic oxygenated machine perfusion (D‐HOPE) was introduced in liver transplantation to improve preservation. When donors after neurological determination of death (DBD) are used, D‐HOPE effect on graft outcomes is unclear. To assess D‐HOPE value in this setting and to identify ideal scenarios for its use, data on primary adult liver transplant recipients from January 2014 to April 2021 were analyzed using inverse probability of treatment weighting, comparing outcomes of D‐HOPE‐treated grafts (n = 121) with those preserved by static cold storage (n = 723). End‐ischemic D‐HOPE was systematically applied since November 2017 based on donor and recipient characteristics and transplant logistics. D‐HOPE use was associated with a significant reduction of early allograft failure (OR: 0.24; 0.83; p = .024), grade ≄3 complications (OR: 0.57; p = .046), comprehensive complication index (−7.20 points; p = .003), and improved patient and graft survival. These results were confirmed in the subset of elderly donors (>75‐year‐old). Although D‐HOPE did not reduce the incidence of biliary complications, its use was associated with a reduced severity of ischemic cholangiopathy. In conclusion, D‐HOPE improves postoperative outcomes and reduces early allograft loss in extended criteria DBD grafts

    PMN-MDSC frequency discriminates active versus latent tuberculosis and could play a role in counteracting the immune-mediated lung damage in active disease

    Get PDF
    : Tuberculosis (TB), due to Mycobacterium tuberculosis infection, is still the principal cause of death caused by a single infectious agent. The balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. Factors defining this variety are unclear and likely involve both mycobacterial and immunological components. Myeloid derived suppressor cells (MDSC) have been shown to be expanded during TB, but their role in human TB pathogenesis is not clear. We evaluated the frequency of circulating MDSC by flow-cytometry in 19 patients with active TB, 18 with latent TB infection (LTBI), and 12 healthy donors (HD) as control. Moreover, we investigated the capacity of MDSC to modulate the mycobactericidal activity of monocytes. The association between MDSC level and TB chest X-ray severity score was analyzed. We observed that, unlike active TB, polymorphonuclear (PMN)-MDSC are not expanded in LTBI patients, and, by performing a receiver operating characteristic (ROC) curve analysis, we found that PMN-MDSC frequency supported the discrimination between active disease and LTBI. Interestingly, we observed an association between PMN-MDSC levels and the severity of TB disease evaluated by chest X-ray. Specifically, PMN-MDSC frequency was higher in those classified with a low/mild severity score compared to those classified with a high severity score. Moreover, PMN-MDSC can impact mycobacterial growth by inducing ROS production in Bacillus Calmette et Guerin (BCG)-infected monocytes. This effect was lost when tested with M. tuberculosis (MTB), In conclusion, our data indicate that the elevated frequency of PMN-MDSC in IGRA-positive individuals is associated with active TB. Our findings also pointed out a beneficial role of PMN-MDSC during human active TB, most likely associated with the limitation of inflammation-induced tissue damage

    A comprehensive map of CNS transduction by eight recombinant adeno-associated virus serotypes upon cerebrospinal fluid administration in pigs

    Get PDF
    Cerebrospinal fluid administration of recombinant adeno-associated viral (rAAV) vectors has been demonstrated to be effective in delivering therapeutic genes to the central nervous system (CNS) in different disease animal models. However, a quantitative and qualitative analysis of transduction patterns of the most promising rAAV serotypes for brain targeting in large animal models is missing. Here, we characterize distribution, transduction efficiency, and cellular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.10, rh.39, and rh.43 delivered into the cisterna magna of wild-type pigs. rAAV9 showed the highest transduction efficiency and the widest distribution capability among the vectors tested. Moreover, rAAV9 robustly transduced both glia and neurons, including the motor neurons of the spinal cord. Relevant cell transduction specificity of the glia was observed after rAAV1 and rAAV7 delivery. rAAV7 also displayed a specific tropism to Purkinje cells. Evaluation of biochemical and hematological markers suggested that all rAAV serotypes tested were well tolerated. This study provides a comprehensive CNS transduction map in a useful preclinical large animal model enabling the selection of potentially clinically transferable rAAV serotypes based on disease specificity. Therefore, our data are instrumental for the clinical evaluation of these rAAV vectors in human neurodegenerative diseases

    AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability

    Get PDF
    PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.Abbreviations: ACTB/ÎČ-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATAD3A: ATPase family AAA domain containing 3A; BCL2L1/BCL-xL: BCL2 like 1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OMA1: OMA1 zinc metallopeptidase; OMM: outer mitochondrial membrane; PARL: presenilin associated rhomboid like; PARP: poly(ADP-ribose) polymerase; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; SDHA: succinate dehydrogenase complex flavoprotein subunit A; TOMM70: translocase of outer mitochondrial membrane 70

    Comparison and combination of a hemodynamics/biomarkers-based model with simplified PESI score for prognostic stratification of acute pulmonary embolism: findings from a real world study

    Get PDF
    Background: Prognostic stratification is of utmost importance for management of acute Pulmonary Embolism (PE) in clinical practice. Many prognostic models have been proposed, but which is the best prognosticator in real life remains unclear. The aim of our study was to compare and combine the predictive values of the hemodynamics/biomarkers based prognostic model proposed by European Society of Cardiology (ESC) in 2008 and simplified PESI score (sPESI).Methods: Data records of 452 patients discharged for acute PE from Internal Medicine wards of Tuscany (Italy) were analysed. The ESC model and sPESI were retrospectively calculated and compared by using Areas under Receiver Operating Characteristics (ROC) Curves (AUCs) and finally the combination of the two models was tested in hemodinamically stable patients. All cause and PE-related in-hospital mortality and fatal or major bleedings were the analyzed endpointsResults: All cause in-hospital mortality was 25% (16.6% PE related) in high risk, 8.7% (4.7%) in intermediate risk and 3.8% (1.2%) in low risk patients according to ESC model. All cause in-hospital mortality was 10.95% (5.75% PE related) in patients with sPESI score ≄1 and 0% (0%) in sPESI score 0. Predictive performance of sPESI was not significantly different compared with 2008 ESC model both for all cause (AUC sPESI 0.711, 95% CI: 0.661-0.758 versus ESC 0.619, 95% CI: 0.567-0.670, difference between AUCs 0.0916, p=0.084) and for PE-related mortality (AUC sPESI 0.764, 95% CI: 0.717-0.808 versus ESC 0.650, 95% CI: 0.598-0.700, difference between AUCs 0.114, p=0.11). Fatal or major bleedings occurred in 4.30% of high risk, 1.60% of intermediate risk and 2.50% of low risk patients according to 2008 ESC model, whereas these occurred in 1.80% of high risk and 1.45% of low risk patients according to sPESI, respectively. Predictive performance for fatal or major bleeding between two models was not significantly different (AUC sPESI 0.658, 95% CI: 0.606-0.707 versus ESC 0.512, 95% CI: 0.459-0.565, difference between AUCs 0.145, p=0.34). In hemodynamically stable patients, the combined endpoint in-hospital PE-related mortality and/or fatal or major bleeding (adverse events) occurred in 0% of patients with low risk ESC model and sPESI score 0, whilst it occurred in 5.5% of patients with low-risk ESC model but sPESI ≄1. In intermediate risk patients according to ESC model, adverse events occurred in 3.6% of patients with sPESI score 0 and 6.65% of patients with sPESI score ≄1.Conclusions: In real world, predictive performance of sPESI and the hemodynamic/biomarkers-based ESC model as prognosticator of in-hospital mortality and bleedings is similar. Combination of sPESI 0 with low risk ESC model may identify patients with very low risk of adverse events and candidate for early hospital discharge or home treatment.

    Perspective Chapter: Methanol as a Fuel for Direct Methanol Fuel Cells (DMFCs) – Principles and Performance

    No full text
    Methanol, also known as methyl alcohol (CH3OH), is a colorless, flammable, and volatile liquid produced commercially through the catalytic reaction of carbon monoxide and hydrogen or by gasification. Despite toxicity and serious health effects, methanol has recently gained attention as a feedstock for chemical synthesis, a solvent in industrial processes, an antifreeze agent, a potential solution for sustainable energy production, and as a potential alternative fuel for biofuel in automotive diesel engines in diesel vehicle applications. This is attributed to its notable energy density and convenient manageability when contrasted with hydrogen, a fuel more commonly employed in various other types of fuel cells. Proper handling and safety precautions are necessary when employing methanol as a fuel in direct methanol fuel cells (DMFCs) in portable electronic devices, backup power systems, and remote power generation applications. The performance of DMFCs is largely determined by the efficiency of the anode and cathode reactions, as well as the conductivity of the electrolyte. In the quest for more environmentally friendly and sustainable options, the uses of methanol are undergoing dynamic advancements, providing solutions that address both current energy demands and overarching environmental objectives

    An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study

    No full text
    Biologically inspired to mammalian olfactory system, electronic noses became popular during the last three decades. In literature, as well as in daily practice, a wide range of applications are reported. Nevertheless, the most pioneering one has been (and still is) the assessment of the human breath composition. In this study, we used a prototype of electronic nose, called Wize Sniffer (WS) and based it on an array of semiconductor gas sensor, to detect ammonia in the breath of patients suffering from severe liver impairment. In the setting of severely impaired liver, toxic substances, such as ammonia, accumulate in the systemic circulation and in the brain. This may result in Hepatic Encephalopathy (HE), a spectrum of neuro–psychiatric abnormalities which include changes in cognitive functions, consciousness, and behaviour. HE can be detected only by specific but time-consuming and burdensome examinations, such as blood ammonia levels assessment and neuro-psychological tests. In the presented proof-of-concept study, we aimed at investigating the possibility of discriminating the severity degree of liver impairment on the basis of the detected breath ammonia, in view of the detection of HE at its early stage

    Dynamic simulation and optimization of a urea granulation circuit

    No full text
    A dynamic flowsheet for a complete urea granulation circuit is presented in this work. This flowsheet is based on previous validated models against industrial data for the crusher and screen and on a new model for the granulation unit. All three units are integrated under the gPROMS Molder Builder Environment, which allows having a powerful tool for the simulation and optimization steps. A sensitivity analysis is performed in order to evaluate the influence the different operating variables on the product and recycle streams. Finally, an optimization is carried out to determine the values of the manipulated variables that maximize the production under specification.Fil: Cotabarren, Ivana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bertin, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Piña, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bucala, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Romagnoli, Maria Jose. State University of Louisiana; Estados Unido
    • 

    corecore