649 research outputs found

    Electronic detection of collective modes of an ultracold plasma

    Full text link
    Using a new technique to directly detect current induced on a nearby electrode, we measure plasma oscillations in ultracold plasmas, which are influenced by the inhomogeneous and time-varying density and changing neutrality. Electronic detection avoids heating and evaporation dynamics associated with previous measurements and allows us to test the importance of the plasma neutrality. We apply dc and pulsed electric fields to control the electron loss rate and find that the charge imbalance of the plasma has a significant effect on the resonant frequency, in excellent agreement with recent predictions suggesting coupling to an edge mode

    A low-loss photonic silica nanofiber for higher-order modes

    Full text link
    Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.Comment: 12 pages, 5 figures, movies available onlin

    Strongly inhibited transport of a 1D Bose gas in a lattice

    Full text link
    We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of 1D atomic Bose gas, providing a possible explanation for our observations.Comment: 5 pages, 4 figure

    Correlated photon pairs generated from a warm atomic ensemble

    Full text link
    We present measurements of the cross-correlation function of photon pairs at 780 nm and 1367 nm, generated in a hot rubidium vapor cell. The temporal character of the biphoton is determined by the dispersive properties of the medium where the pair generation takes place. We show that short correlation times occur for optically thick samples, which can be understood in terms of off-resonant pair generation. By modifying the linear response of the sample, we produce near-resonant photon pairs, which could in principle be used for entanglement distribution

    Cold collisions between atoms in optical lattices

    Full text link
    We have simulated binary collisions between atoms in optical lattices during Sisyphus cooling. Our Monte Carlo Wave Function simulations show that the collisions selectively accelerate mainly the hotter atoms in the thermal ensemble, and thus affect the steady state which one would normally expect to reach in Sisyphus cooling without collisions.Comment: 4 pages, 1 figur

    Imaging the phase of an evolving Bose-Einstein condensate wavefunction

    Get PDF
    We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate (BEC) and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the BEC from the magnetic trap, its phase develops a form that we measure to be quadratic in the spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two overlapping BEC wavepackets and we measure the small momentum they impart to each other
    • …
    corecore