71 research outputs found

    Electrotransfer of Single-Stranded or Double-Stranded DNA Induces Complete Regression of Palpable B16.F10 Mouse Melanomas

    Get PDF
    Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both immunocompetent and immunodeficient mice, indicating the involvement of the innate immune system in response to DNA. In conclusion, this study demonstrated that the observed antitumor effects are not due to a single factor, but to a combination of factors

    Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Get PDF
    BACKGROUND: Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. METHODS: Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. RESULTS: Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. CONCLUSIONS: Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

    Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments

    Get PDF
    Clinical electroporation (EP) is a rapidly advancing treatment modality that uses electric pulses to introduce drugs or genes into, e.g., cancer cells. The indication of successful EP is an instant plasma membrane permeabilization in the treated tissue. A noninvasive means of monitoring such a tissue reaction represents a great clinical benefit since, in case of target miss, retreatment can be performed immediately. We propose diffusion-weighted magnetic resonance imaging (DW-MRI) as a method to monitor EP tissue, using the concept of the apparent diffusion coefficient (ADC). We hypothesize that the plasma membrane permeabilization induced by EP changes the ADC, suggesting that DW-MRI constitutes a noninvasive and quick means of EP verification. In this study we performed in vivo EP in rat brains, followed by DW-MRI using a clinical MRI scanner. We found a pulse amplitude–dependent increase in the ADC following EP, indicating that (1) DW-MRI is sensitive to the EP-induced changes and (2) the observed changes in ADC are indeed due to the applied electric field

    The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling

    Get PDF
    The aim of this study was to theoretically and experimentally investigate electroporation of mouse tibialis cranialis and to determine the reversible electroporation threshold values needed for parallel and perpendicular orientation of the applied electric field with respect to the muscle fibers. Our study was based on local electric field calculated with three-dimensional realistic numerical models, that we built, and in vivo visualization of electroporated muscle tissue. We established that electroporation of muscle cells in tissue depends on the orientation of the applied electric field; the local electric field threshold values were determined (pulse parameters: 8 × 100 μs, 1 Hz) to be 80 V/cm and 200 V/cm for parallel and perpendicular orientation, respectively. Our results could be useful electric field parameters in the control of skeletal muscle electroporation, which can be used in treatment planning of electroporation based therapies such as gene therapy, genetic vaccination, and electrochemotherapy

    In vivo evolution of tumour cells after the generation of double-strand DNA breaks

    Get PDF
    In vitro, the ratio of single- to double-strand DNA breaks (DSB) and their absolute values determine the cell death pathway. The consequences of the generation of various numbers of DSB generated in vivo in tumour cells have been analysed in two different experimental tumour models. Synchronisation of DSB generation and control of their number have been achieved using different doses of bleomycin (BLM) and tumour cell permeabilisation by means of locally delivered electric pulses. According to BLM dose, different cell death pathways are observed. At a low therapeutic dose, a mitotic cell death pathway is detected. It is characterised by the appearance of 'atypical mitosis', TUNEL and caspase-3 positive, 24 h after the treatment, and later by the presence of typical apoptotic figures, mainly TUNEL positive but caspase-3 negative. Caspase-3 is thus an early marker of apoptosis. Mitotic cell death is also followed by lymphocytic infiltration reaction. At high doses of BLM, pseudoapoptosis is detected within a few minutes after the treatment. These cell death pathways are discussed as a function of the number of DSB generated, by comparison with previous results obtained in vitro using BLM or ionising radiation

    Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin

    Get PDF
    Electrochemotherapy is an antitumour treatment that utilises locally delivered electric pulses to increase cytotoxicity of chemotherapeutic drugs. Besides increased drug delivery, application of electric pulses affects tumour blood flow. The aim of this study was to determine tumour blood flow modifying effects of electrochemotherapy with cisplatin, its effects on tumour oxygenation and to determine their relation to antitumour effectiveness. Electrochemotherapy of SA-1 subcutaneous tumours was performed by application of electric pulses to the tumours, following administration of cisplatin. Tumour blood flow modifying effects of electrochemotherapy were determined by measurement of tumour perfusion using the Patent blue staining technique, determination of tumour blood volume, and microvascular permeability using contrast enhanced magnetic resonance imaging, and tumour oxygenation using electron paramagnetic resonance oximetry. Antitumour effectiveness was determined by tumour growth delay and the extent of tumour necrosis and apoptosis. Tumour treatment by electrochemotherapy induced 9.4 days tumour growth delay. Tumour blood flow was reduced instantaneously and persisted for several days. This reduction in tumour blood flow was reflected in reduced tumour oxygenation. The maximal reduction in partial oxygen pressure (pO2) levels was observed at 2 h after the treatment, with steady recovery to the pretreatment level within 48 h. The reduced tumour blood flow and oxygenation correlated well with the extent of tumour necrosis and tumour cells apoptosis induced by electrochemotherapy with cisplatin. Therefore, the data indicate that antitumour effectiveness of electrochemotherapy is not only due to increased cytotoxicity of cisplatin due to electroporation of tumour cells, but also due to anti-vascular effect of electrochemotherapy, which resulted in reduced tumour blood flow and oxygenation

    Calcium electroporation and electrochemotherapy for cancer treatment:Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy

    Get PDF
    Abstract Calcium electroporation is a novel anti-cancer treatment investigated in clinical trials. We explored cell sensitivity to calcium electroporation and electroporation with bleomycin, using viability assays at different time and temperature points, as well as heat calorimetry, lipidomics, and flow cytometry. Three cell lines: HT29 (colon cancer), MDA-MB231 (breast cancer), and HDF-n (normal fibroblasts) were investigated for; (a) cell survival dependent on time of addition of drug relative to electroporation (1.2 kV/cm, 8 pulses, 99 µs, 1 Hz), at different temperatures (37 °C, 27 °C, 17 °C); (b) heat capacity profiles obtained by differential scanning calorimetry without added calcium; (c) lipid composition by mass spectrometry; (d) phosphatidylserine in the plasma membrane outer leaflet using flow cytometry. Temperature as well as time of drug administration affected treatment efficacy in HT29 and HDF-n cells, but not MDA-MB231 cells. Interestingly the HT29 cell line displayed a higher phase transition temperature (approximately 20 °C) versus 14 °C (HDF-n) and 15 °C (MDA-MB231). Furthermore the HT29 cell membranes had a higher ratio of ethers to esters, and a higher expression of phosphatidylserine in the outer leaflet. In conclusion, lipid composition and heat capacity of the membrane might influence permeabilisation of cells and thereby the effect of calcium electroporation and electrochemotherapy

    Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts.</p> <p>Methods</p> <p>Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP) followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy.</p> <p>Results</p> <p>The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50%) accompanied by a marked tumor re-growth delay (TRD, about 20 days). The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days.</p> <p>Conclusions</p> <p>These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells <it>in vivo </it>and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.</p

    Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When a cell is exposed to a time-varying magnetic field, this leads to an induced voltage on the cytoplasmic membrane, as well as on the membranes of the internal organelles, such as mitochondria. These potential changes in the organelles could have a significant impact on their functionality. However, a quantitative analysis on the magnetically-induced membrane potential on the internal organelles has not been performed.</p> <p>Methods</p> <p>Using a two-shell model, we provided the first analytical solution for the transmembrane potential in the organelle membrane induced by a time-varying magnetic field. We then analyzed factors that impact on the polarization of the organelle, including the frequency of the magnetic field, the presence of the outer cytoplasmic membrane, and electrical and geometrical parameters of the cytoplasmic membrane and the organelle membrane.</p> <p>Results</p> <p>The amount of polarization in the organelle was less than its counterpart in the cytoplasmic membrane. This was largely due to the presence of the cell membrane, which "shielded" the internal organelle from excessive polarization by the field. Organelle polarization was largely dependent on the frequency of the magnetic field, and its polarization was not significant under the low frequency band used for transcranial magnetic stimulation (TMS). Both the properties of the cytoplasmic and the organelle membranes affect the polarization of the internal organelle in a frequency-dependent manner.</p> <p>Conclusions</p> <p>The work provided a theoretical framework and insights into factors affecting mitochondrial function under time-varying magnetic stimulation, and provided evidence that TMS does not affect normal mitochondrial functionality by altering its membrane potential.</p
    corecore