222 research outputs found

    The Effect of Sugar-Free Versus Sugar-Sweetened Beverages on Satiety, Liking and Wanting: An 18 Month Randomized Double-Blind Trial in Children

    Get PDF
    BACKGROUND: Substituting sugar-free for sugar-sweetened beverages reduces weight gain. A possible explanation is that sugar-containing and sugar-free beverages cause the same degree of satiety. However, this has not been tested in long-term trials. METHODS: We randomized 203 children aged 7-11 years to receive 250 mL per day of an artificially sweetened sugar-free beverage or a similarly looking and tasting sugar-sweetened beverage. We measured satiety on a 5-point scale by questionnaire at 0, 6, 12 and 18 months. We calculated the change in satiety from before intake to 1 minute after intake and 15 minutes after intake. We then calculated the odds ratio that satiety increased by 1 point in the sugar-group versus the sugar-free group. We also investigated how much the children liked and wanted the beverages. RESULTS: 146 children or 72% completed the study. We found no statistically significant difference in satiety between the sugar-free and sugar-sweetened group; the adjusted odds ratio for a 1 point increase in satiety in the sugar group versus the sugar-free group was 0.77 at 1 minute (95% confidence interval, 0.46 to 1.29), and 1.44 at 15 minutes after intake (95% CI, 0.86 to 2.40). The sugar-group liked and wanted their beverage slightly more than the sugar-free group, adjusted odds ratio 1.63 (95% CI 1.05 to 2.54) and 1.65 (95% CI 1.07 to 2.55), respectively. CONCLUSIONS: Sugar-sweetened and sugar-free beverages produced similar satiety. Therefore when children are given sugar-free instead of sugar-containing drinks they might not make up the missing calories from other sources. This may explain our previous observation that children in the sugar-free group accumulated less body fat than those in the sugar group.<br /

    The influence of caffeine on energy content of sugar-sweetened beverages : the caffeine–calorie effect

    Get PDF
    Background/Objectives: Caffeine is a mildly addictive psychoactive chemical and controversial additive to sugar-sweetened beverages (SSBs). The objective of this study is to assess if removal of caffeine from SSBs allows co-removal of sucrose (energy) without affecting flavour of SSBs, and if removal of caffeine could potentially affect population weight gain. Subjects/Methods: The research comprised of three studies; study 1 used three-alternate forced choice and paired comparison tests to establish detection thresholds for caffeine in water and sucrose solution (subjects, n ¼ 63), and to determine if caffeine suppressed sweetness. Study 2 (subjects, n ¼ 30) examined the proportion of sucrose that could be co-removed with caffeine from SSBs without affecting the flavour of the SSBs. Study 3 applied validated coefficients to estimate the impact on the weight of the United States population if there was no caffeine in SSBs. Results: Detection threshold for caffeine in water was higher (1.09±0.08 mM) than the detection threshold for caffeine in sucrose solution (0.49 ± 0.04 mM), and a paired comparison test revealed caffeine significantly reduced the sweetness of sucrose (Po0.001). Removing caffeine from SSBs allowed co-removal of 10.3% sucrose without affecting flavour of the SSBs, equating to 116 kJ per 500 ml serving. The effect of this on body weight in adults and children would be 0.600 and 0.142 kg, which are equivalent to 2.08 and 1.10 years of observed existing trends in weight gain, respectively. Conclusion: These data suggest the extra energy in SSBs as a result of caffeine&apos;s effect on sweetness may be associated with adult and child weight gain

    Applications of nutrient profiling : potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system

    Full text link
    Background/objectives: A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country.Methods: The &lsquo;Four &lsquo;P&rsquo;s of Marketing&rsquo; (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes.Results and conclusions: There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.<br /

    A new approach to assessing the health benefit from obesity interventions in children and adolescents: the assessing cost-effectiveness in obesity project

    Full text link
    OBJECTIVE: To report on a new modelling approach developed for the assessing cost-effectiveness in obesity (ACE-Obesity) project and the likely population health benefit and strength of evidence for 13 potential obesity prevention interventions in children and adolescents in Australia. METHODS: We used the best available evidence, including evidence from non-traditional epidemiological study designs, to determine the health benefits as body mass index (BMI) units saved and disability-adjusted life years (DALYs) saved. We developed new methods to model the impact of behaviours on BMI post-intervention where this was not measured and the impacts on DALYs over the child\u27s lifetime (on the assumption that changes in BMI were maintained into adulthood). A working group of stakeholders provided input into decisions on the selection of interventions, the assumptions for modelling and the strength of the evidence. RESULTS: The likely health benefit varied considerably, as did the strength of the evidence from which that health benefit was calculated. The greatest health benefit is likely to be achieved by the \u27Reduction of TV advertising of high fat and/or high sugar foods and drinks to children\u27, \u27Laparoscopic adjustable gastric banding\u27 and the \u27multi-faceted school-based programme with an active physical education component\u27 interventions. CONCLUSIONS: The use of consistent methods and common health outcome measures enables valid comparison of the potential impact of interventions, but comparisons must take into account the strength of the evidence used. Other considerations, including cost-effectiveness and acceptability to stakeholders, will be presented in future ACE-Obesity papers. Information gaps identified include the need for new and more effective initiatives for the prevention of overweight and obesity and for better evaluations of public health interventions

    Rye kernel breakfast increases satiety in the afternoon - an effect of food structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The structure of whole grain cereals is maintained to varying degrees during processing and preparation of foods. Food structure can influence metabolism, including perceived hunger and satiety. A diet that enhances satiety per calorie may help to prevent excessive calorie intake. The objective of this work was to compare subjective appetite ratings after consumption of intact and milled rye kernels.</p> <p>Methods</p> <p>Two studies were performed using a randomized, cross-over design. Ratings for appetite (hunger, satiety and desire to eat) were registered during an 8-h period after consumption of whole and milled rye kernels prepared as breads (study 1, n = 24) and porridges (study 2, n = 20). Sifted wheat bread was used as reference in both study parts and the products were eaten in iso-caloric portions with standardized additional breakfast foods. Breads and porridges were analyzed to determine whether structure (whole vs. milled kernels) effected dietary fibre content and composition after preparation of the products. Statistical evaluation of the appetite ratings after intake of the different breakfasts was done by paired t-tests for morning and afternoon ratings separately, with subjects as random effect and type of breakfast and time points as fixed effects.</p> <p>Results</p> <p>All rye breakfasts resulted in higher satiety ratings in the morning and afternoon compared with the iso-caloric reference breakfast with sifted wheat bread. Rye bread with milled or whole kernels affected appetite equally, so no effect of structure was observed. In contrast, after consumption of the rye kernel breakfast, satiety was increased and hunger suppressed in the afternoon compared with the milled rye kernel porridge breakfast. This effect could be related to structural differences alone, because the products were equal in nutritional content including dietary fibre content and composition.</p> <p>Conclusions</p> <p>The study demonstrates that small changes in diet composition such as cereal grain structure have the potential to effect feelings of hunger and satiety.</p> <p>Trial registration</p> <p>This trial was registered at clinicaltrials.gov as <a href="http://www.clinicaltrials.gov/ct2/show/NCT01042418">NCT01042418</a>.</p

    Dissociated Representations of Pleasant and Unpleasant Olfacto-Trigeminal Mixtures: An fMRI Study

    Get PDF
    How the pleasantness of chemosensory stimuli such as odorants or intranasal trigeminal compounds is processed in the human brain has been the focus of considerable recent interest. Yet, so far, only the unimodal form of this hedonic processing has been explored, and not its bimodal form during crossmodal integration of olfactory and trigeminal stimuli. The main purpose of the present study was to investigate this question. To this end, functional magnetic resonance imaging (fMRI) was used in an experiment comparing brain activation related to a pleasant and a relatively unpleasant olfacto-trigeminal mixture, and to their individual components (CO2 alone, Orange alone, Rose alone). Results revealed first common neural activity patterns in response to both mixtures in a number of regions: notably the superior temporal gyrus and the caudate nucleus. Common activations were also observed in the insula, although the pleasant mixture activated the right insula whereas the unpleasant mixture activated the left insula. However, specific activations were observed in anterior cingulate gyrus and the ventral tegmental area only during the perception of the pleasant mixture. These findings emphasized for the firs time the involvement of the latter structures in processing of pleasantness during crossmodal integration of chemosensory stimuli

    Regional Brain Responses in Nulliparous Women to Emotional Infant Stimuli

    Get PDF
    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational tendencies may modulate neural responses to infant cues

    Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide

    Get PDF
    This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus

    Modelling fast forms of visual neural plasticity using a modified second-order motion energy model

    Get PDF
    The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1-17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model's output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales. © 2014 Springer Science+Business Media New York
    corecore