221 research outputs found

    Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Solar Coronal Mass Ejection

    Full text link
    We present an analysis of the fast coronal mass ejection (CME) of 2012 March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ~2700 km/s at 15 R_sun to ~1500 km/s at 154 R_sun), the Earth-directed part showed an abrupt retardation below 35 R_sun (from ~1700 to ~900 km/s). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied

    Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ Signatures

    Full text link
    We present a new approach to combine remote observations and in situ data by STEREO/HI and Wind, respectively, to derive the kinematics and propagation directions of interplanetary coronal mass ejections (ICMEs). We used two methods, Fixed-Phi and Harmonic Mean, to convert ICME elongations into distance, and constrained the ICME direction such that the ICME distance-time and velocity-time profiles are most consistent with in situ measurements of the arrival time and velocity. The derived velocity-time functions from the Sun to 1 AU for the three events under study (1-6 June 2008, 13-18 February 2009, 3-5 April 2010) do not show strong differences for the two extreme geometrical assumptions of a wide ICME with a circular front (Harmonic Mean) or an ICME of small spatial extent in the ecliptic (Fixed-Phi). Due to the geometrical assumptions, Harmonic Mean delivers the propagation direction further away from the observing spacecraft with a mean difference of ~25 degree

    Analysis and Application of an efficient line solver based upon the Symmetrical Coupled Gauss-Seidel Scheme

    Get PDF
    This paper describes an efficient line solver for the coupled equations. The calculation procedure, called SCGS/LS (Symmetrical Coupled Gauss-Seidel/Line Solver), is based on the SCGS scheme. The technique is applied to the driven cavity problem for the incompressible Navier-Stokes equations. A Fourier analysis of this technique is carried out. The scheme is simple and easy to programme. The rates of convergence and the computational times are reported for the test case

    ElEvoHI : A NOVEL CME PREDICTION TOOL FOR HELIOSPHERIC IMAGING COMBINING AN ELLIPTICAL FRONT WITH DRAG-BASED MODEL FITTING

    Get PDF
    This article has an erratum: DOI 10.3847/0004-637X/831/2/210In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-phi, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to +/- 6.5 hr and the arrival speed forecast by approximate to 250 to +/- 53 km s(-1), depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.Peer reviewe

    STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5-7 April 2010

    Full text link
    On 5 April 2010 an interplanetary (IP) shock was detected by the Wind spacecraft ahead of Earth, followed by a fast (average speed 650 km/s) IP coronal mass ejection (ICME). During the subsequent moderate geomagnetic storm (minimum Dst = -72 nT, maximum Kp=8-), communication with the Galaxy 15 satellite was lost. We link images from STEREO/SECCHI to the near-Earth in situ observations and show that the ICME did not decelerate much between Sun and Earth. The ICME flank was responsible for a long storm growth phase. This type of glancing collision was for the first time directly observed with the STEREO Heliospheric Imagers. The magnetic cloud (MC) inside the ICME cannot be modeled with approaches assuming an invariant direction. These observations confirm the hypotheses that parts of ICMEs classified as (1) long-duration MCs or (2) magnetic-cloud-like (MCL) structures can be a consequence of a spacecraft trajectory through the ICME flank.Comment: Geophysical Research Letters (accepted); 3 Figure

    Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU

    Full text link
    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s−12700 \: km \: s^{-1}). We track the CMEs to 34.9±7.134.9 \pm 7.1 degrees elongation from the Sun with J-maps constructed using the SATPLOT tool, resulting in prediction lead times of −26.4±15.3-26.4 \pm 15.3 hours. The geometrical models we use assume different CME front shapes (Fixed-Φ\Phi, Harmonic Mean, Self-Similar Expansion), and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1±6.38.1 \pm 6.3 hours (rmsrms value of 10.9h). Speeds are consistent to within 284±288 km s−1284 \pm 288 \: km \: s^{-1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1±5.06.1 \pm 5.0 hours (rmsrms value of 7.9h), and for the speeds to 53±50 km s−153 \pm 50 \: km \: s^{-1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.Comment: 19 pages, 13 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore