8 research outputs found

    Changes in renal tri-iodothyronine and thyroxine handling during fasting

    Get PDF
    OBJECTIVE: Liver handling of thyroid hormones (TH) has been known to alter significantly during fasting. This study investigates whether renal handling of TH is also changed during fasting. METHODS: We measured urinary excretion rates and clearances of free tri-iodothyronine (T(3)) and free thyroxine (T(4)) in healthy subjects prior to and on the third day of fasting. RESULTS: During fasting, both mean T(3) and T(4) urinary excretion decreased significantly to a mean value of 42% of control. Also, total and free (F) serum T(3) concentrations declined significantly, but serum T(4) did not change. Both FT(3) and FT(4) clearance decreased significantly during fasting (62% and 42% of control). The fasting-induced decrease in uric acid clearance correlated well with the decrease in FT(3) clearance (r=0.94; P<0.001). Serum concentrations of non-esterified fatty acids (NEFA) were significantly elevated during fasting. CONCLUSIONS: The findings cannot be fully explained by the fasting-induced decrease in serum T(3), a

    Evaluation in vitro and in rats of161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy

    Get PDF
    The characteristics of terbium-161 diethylene triamine penta-acetic acid (DTPA) labelled octreotide with respect to specific binding to somatostatin (octreotide) receptors on rat brain cortex membranes, biological activity, uptake and excretion by isolated perfused rat livers and metabolism in vivo in normal and tumour-bearing rats were determined and compared to those of indium-111 DTPA-octreotide. The results of the binding studies demonstrate that161Tb-DTPA-octreotide is a high-affinity radioligand for somatostatin receptors, with an affinity comparable to that of111In-DTPA-octreotide. Rat growth hormone secretion inhibition experiments showed that161Tb-DTPA-octreotide has a similar potency to111In-DTPA-octreotide.161Tb-DTPA-octreotide appeared to be taken up even less by the isolated perfused rat liver than111In-DTPA-octreotide, as almost no tracer disappeared from the perfusion medium. Furthermore, hardly any radioactivity was found in the liver, and excretion into the bile was negligible. The biodistribution studies showed that for octreotide receptor-positive organs, such as pancreas and adrenals, uptake of161Tb-DTPA-octreotide is lower then that of111In-DTPA-octreotide. However, as the clearance from the blood of the former compound is faster than that of the latter, the tissue/blood ratio is higher in the case of161Tb-DTPA-octreotide than with111In-DTPA-octreotide. Furthermore, these studies demonstrated that the uptake of161Tb-DTPA-octreotide by the renal tubular cells after glomerular filtration can be reduced by administration of lysine or sodium maleate. Increase in urine production before and during the experiment had no effect on the kidney uptake of161Tb-DTPA-octreotide. Finally, it appeared that a maximal labelling efficiency of161Tb-DTPA-octreotide is essential, as with decreasing efficiency the uptake in the octreotide receptor-positive organs decreased, whereas non-specific uptake in the other organs was increased. It is concluded that, on the basis of the favourable physical characteristics of161Tb combined with the in vitro and in vivo studies performed with161Tb-DTPA-octreotide, the latter is a promising radiopharmaceutical for both intraoperative scanning and radiotherapy. Studies in patients need to be performed now to see whether161Tb-DTPA-octreotide can indeed open new therapeutic applications for patients bearing octreotide receptor-positive tumours

    Kidney Protection During Receptor Radionuclide Therapy

    No full text
    The discovery of somatostatin and the cloning and characterisation of its five receptor subtypes have led to many intriguing developments in clinical nuclear medicine. It was found that somatostatin administration resulted in inhibition of hormonal overproduction syndromes [5], which are found in several neuro-endocrine tumours. In addition, these tumours were shown to exhibit a high expression of somatostatin receptors [8-10]. Somatostatin itself can not be used for treatment purposes because it is metabolised very rapidly [5]. Analogues were made, of which octreotide was the most important. This eight- amino acid peptide has a longer plasma half-life and is now used for treatment of neuro- endocrine tumour-related hormonal overproduction syndromes [5]. The next step was the development of specific targeting and visualisation of the somatostatin receptor on the tumour cell surface. Octreotide was radiolabelled with the gamma-emitter 111In, using the attached chelator DTPA ([111In-DTPA0]octreotide, Octreoscan®). In 1994, Octreoscan® was approved for diagnostic use by the U.S. Federal Drug Administration in patients and it has become one of the most important imaging investigations in the initial identification and staging of gastroenteropancreatic neuro endocrine tumours [16-18, 234]. Patients with neuro-endocrine tumours have a number of therapeutic options (surgery, unlabelled somatostatin analogues, hepatic artery embolisation, ablation, chemotherapy and interferon-alpha), but these seldom result in cure [5, 235]. So, it was aimed to deliver therapeutic radioactivity to the tumour, adding a new therapeutic modality to the current available treatment options

    Indication for different mechanisms of kidney uptake of radiolabeled peptides.

    No full text
    Contains fulltext : 51440.pdf (publisher's version ) (Closed access)Nephrotoxicity due to renal reabsorption of radiolabeled peptides limits the tumor dose in peptide receptor radiotherapy (PRRT). Therefore, we evaluated the ability of several agents to inhibit the renal accumulation of different radiopeptides. METHODS: Male Wistar rats (4 per group) were injected intravenously with 1 MBq of (111)In-labeled octreotide (OCT), minigastrin (MG), bombesin (BOM), or exendin (EX), together with a potential inhibitor of renal uptake (lysine [Lys], poly-glutamic acid [PGA], and Gelofusine [GF], a gelatin-based plasma expander) or phosphate-buffered saline as a control. Organ uptake at 20 h after injection was determined as the percentage of injected activity per gram (%IA/g). Lys, PGA, and GF were also combined to determine whether an additive effect could be obtained. The localization of the peptides in the kidneys was investigated by autoradiography using a phosphor imager. RESULTS: OCT accumulation in the kidney was inhibited by Lys and GF (40.7%-45.1%), whereas PGA was ineffective. On the other hand, renal uptake of BOM, MG, and EX was inhibited by PGA and GF (15.4%-85.4%), whereas Lys was ineffective. The combination of GF and Lys showed additive effects in inhibiting OCT uptake, whereas PGA and GF had additive effects for the inhibition of EX uptake. The amount of kidney uptake correlated with the number of charged amino acids. All radiopeptides were localized in the renal cortex, as indicated by autoradiography. CONCLUSION: Inhibition of renal accumulation of the radiopeptides tested could be achieved by either Lys or PGA but not by both at the same time, suggesting 2 different uptake mechanisms. The differences in renal accumulation of radiopeptides may be related to the number of charges of a molecule. GF is the only compound that inhibited renal accumulation of all radiopeptides tested. Additional experiments are needed to further elucidate these findings and to optimize inhibition of renal accumulation of radiopeptides to reduce the kidney dose in PRRT

    Molecular imaging of reduced renal uptake of radiolabelled [DOTA0,Tyr3]octreotate by the combination of lysine and Gelofusine in rats.

    No full text
    Item does not contain fulltextAIM: In peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues, kidney uptake of radiolabelled compound is the major dose-limiting factor. We studied the effects of Gelofusine (20 mg) and lysine (100 mg) and the combination of both after injection of therapeutic doses of radiolabelled [DOTA0,Tyr3]octreotate (60 MBq 111In or 555 MBq 177Lu labelled to 15 microg peptide) in male Lewis rats. METHODS: Kidney uptake was measured by single photon emission computed tomography (SPECT) scans with a four-headed multi-pinhole camera (NanoSPECT) at 24 h, 5 and 7 days p. i. and was quantified by volume of interest analysis. For validation the activity concentration in the dissected kidneys was also determined ex vivo using a gamma counter and a dose calibrator. RESULTS: Gelofusine and lysine both reduced kidney uptake of [177Lu-DOTA0,Tyr3]octreotate significantly by about 40% at all time points. The combination of Gelofusine and lysine resulted in a 62% inhibition of kidney uptake (p < 0.01 vs. lysine alone). A weak but significant dose-response relationship for Gelofusine, but not for lysine, was found. In a study with [111In-DOTA0,Tyr3]octreotate, conclusions drawn from NanoSPECT data were confirmed by biodistribution data. CONCLUSIONS: We conclude that rat kidney uptake of radiolabelled somatostatin analogues can be monitored for a longer period in the same animal using animal SPECT. Gelofusine and lysine had equal potential to reduce kidney uptake of therapeutic doses of [177Lu-DOTA0,Tyr3]octreotate. The combination of these compounds caused a significantly larger reduction than lysine or Gelofusine alone and may therefore offer new possibilities in PRRT. The NanoSPECT data were validated by standard biodistribution experiments
    corecore