3,503 research outputs found

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    An approach to the synthesis of biological tissue

    Get PDF
    Mathematical phantoms developed to synthesize realistic complex backgrounds such as those obtained when imaging biological tissue, play a key role in the quantitative assessment of image quality for medical and biomedical imaging. We present a modeling framework for the synthesis of realistic tissue samples. The technique is demonstrated using radiological breast tissue. The model employs a two-component image decomposition consisting of a slowly, spatially varying mean-background and a residual texture image. Each component is synthesized independently. The approach and results presented here constitute an important step towards developing methods for the quantitative assessment of image quality in medical and biomedical imaging, and more generally image science

    Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    Get PDF
    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology

    Clownfishes evolution below and above the species level.

    Get PDF
    The difference between rapid morphological evolutionary changes observed in populations and the long periods of stasis detected in the fossil record has raised a decade-long debate about the exact role played by intraspecific mechanisms at the interspecific level. Although they represent different scales of the same evolutionary process, micro- and macroevolution are rarely studied together and few empirical studies have compared the rates of evolution and the selective pressures between both scales. Here, we analyse morphological, genetic and ecological traits in clownfishes at different evolutionary scales and demonstrate that the tempo of molecular and morphological evolution at the species level can be, to some extent, predicted from parameters estimated below the species level, such as the effective population size or the rate of evolution within populations. We also show that similar codons in the gene of the rhodopsin RH1, a light-sensitive receptor protein, are under positive selection at the intra and interspecific scales, suggesting that similar selective pressures are acting at both levels

    On the Effect of Asymmetrical Trait Inheritance on Models of Trait Evolution.

    Get PDF
    Current phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a "jump" of mean phenotypes due to asymmetrical trait inheritance at cladogenesis. Here, we aim to clarify the effect of asymmetrical trait inheritance at speciation on macroevolutionary analyses, focusing on model testing and parameter estimation using some of the most common models of quantitative trait evolution. We developed an individual-based simulation framework in which the evolution of phenotypes is determined by trait changes at the individual level accumulating across generations, and cladogenesis occurs then by separation of subsets of the individuals into new lineages. Through simulations, we assess the magnitude of phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that even small jumps can strongly alter both the results of model selection and parameter estimations, potentially affecting the biological interpretation of the estimated mode of evolution of a trait. Our results call for caution when interpreting analyses of trait evolution, while highlighting the importance of testing a wide range of alternative models. In the light of our findings, we propose that future methodological advances in comparative methods should more explicitly model the intraspecific variability around species mean phenotypes and how it is inherited at speciation

    Hybrid in vitro diffusion cell for simultaneous evaluation of hair and skin decontamination: temporal distribution of chemical contaminants

    Get PDF
    Most casualty or personnel decontamination studies have focused on removing contaminants from the skin. However, scalp hair and underlying skin are the most likely areas of contamination following airborne exposure to chemicals. The aim of this study was to investigate the interactions of contaminants with scalp hair and underlying skin using a hybrid in vitro diffusion cell model. The in vitro hybrid test system comprised “curtains” of human hair mounted onto sections of excised porcine skin within a modified diffusion cell. The results demonstrated that hair substantially reduced underlying scalp skin contamination and that hair may provide a limited decontamination effect by removing contaminants from the skin surface. This hybrid test system may have application in the development of improved chemical incident response processes through the evaluation of various hair and skin decontamination strategies.Peer reviewedFinal Published versio

    Chaotic properties of systems with Markov dynamics

    Full text link
    We present a general approach for computing the dynamic partition function of a continuous-time Markov process. The Ruelle topological pressure is identified with the large deviation function of a physical observable. We construct for the first time a corresponding finite Kolmogorov-Sinai entropy for these processes. Then, as an example, the latter is computed for a symmetric exclusion process. We further present the first exact calculation of the topological pressure for an N-body stochastic interacting system, namely an infinite-range Ising model endowed with spin-flip dynamics. Expressions for the Kolmogorov-Sinai and the topological entropies follow.Comment: 4 pages, to appear in the Physical Review Letter

    Publisher Correction: The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity.

    Get PDF
    In the version of this Article originally published, in Fig. 3a the first boundary was incorrectly labelled the "K/T boundary"; it should have read the "K/Pg boundary". The two equations in the main text were incorrectly omitted from the HTML. In the description of the posterior distribution of an ancestral state, the normal distribution was incorrectly described as being "assigned as prior to the node value"; it should have read "assigned as calibration to the node value". In the associated equation (the second equation in the text), the denominator of the last term was incorrectly given as "Node prior"; it should have read "Node calibration". In the same equation, the numerator of the third term on the right-hand side of the equation contained incorrect superscript notation on the x and this is shown in the full equation in the notice below.In the Acknowledgements, the following two sentences were incorrectly omitted: "The authors thank the Vital-IT facilities of the Swiss Institute of Bioinformatics for the computational support" and "This work was funded by the University of Lausanne and the Swiss National Science Foundation (CRSIII3-147630) to N.S." In the Author contributions section, the first sentence was incorrectly given as "J.R. designed the study. J.R., N.S. and D. Silvestro designed the methodology and ran the analyses"; it should have read "J.R., D.S. and N.S. designed the study and the methodology". In the Supplementary Information, all three instances of the word "prior" were incorrect and should have read "calibration".These errors have now been corrected in all versions of the Article
    corecore