1,088 research outputs found

    Contact pressure prediction in sheet metal forming using finite element analysis

    Full text link
    Tool wear has become a significant issue associated with the forming of high strength sheet steels in the automotive industry. In order to combat this problem, recent research has been devoted to utilizing the contact results obtained from current sheet metal forming software predictions, in order to develop/apply tool wear models or tool material selection criteria for use in the stamping plant. This investigation aims to determine whether a specialized sheet metal forming software package can correctly capture the complex contact conditions that occur during a typical sheet metal stamping process. The contact pressure at the die radius was compared to results obtained using a general-purpose finite element software package, for a simple channel-forming process. Although some qualitative similarities between the two predictions were observed, it was found that significant differences in the magnitude and distribution of the contact pressure exists. The reasons for the discrepancies in results are discussed with respect to the simplifications and assumptions adopted in the finite element model definitions, and with regards to other results available in the literature.<br /

    Effects of temperature in relation to sheet metal stamping

    Full text link
    The demand to reduce the use of lubricants and increase tool life in sheet metal stamping has resulted in increased research on the sliding contact between the tool and the sheet materials. Unlubricated sliding wear tests for soft carbon steel sliding on D2 tool steel were performed using a pin-on-disk tribometer. The results revealed that temperature has an influencing role in the wear of tool steel and that material transfer between tool and sheet can be minimized at a certain temperature range in sheet metal stamping

    Temperature conditions during \u27cold\u27 sheet metal stamping

    Full text link
    This paper investigates the friction and deformation-induced heating that occurs during the stamping of high strength sheet steels, under room temperature conditions. A thermo-mechanical finite element model of a typical plane strain stamping process was developed to understand the temperature conditions experienced within the die and blank material; and this was validated against experimental measurements. A high level of correlation was achieved between the finite element model and experimental data for a range of operating conditions and parameters. The model showed that the heat generated during realistic production conditions can result in high temperatures of up to 108 &deg;C and 181 &deg;C in the blank and die materials, respectively, for what was traditionally expected to be \u27cold\u27 forming conditions. It was identified that frictional heating was primarily responsible for the peak temperatures at the die surface, whilst the peak blank temperatures were caused by a combination of frictional and deformation induced heating. The results provide new insights into the local conditions within the blank and die, and are of direct relevance to sheet formability and tool wear performance during industrial stamping processes. &copy; 2014 Elsevier B.V. All rights reserved

    Constitutive modelling of high strength titanium alloy Ti-6Al-4 V for sheet forming applications at room temperature

    Get PDF
    To enable the design and optimisation of forming processes at room temperature the material behaviour of Ti-6Al-4 V needs to be accurately represented in numerical analysis and this requires an advanced material model. In particular, an accurate representation of the shape and size of the yield locus as well as its evolution during forming is important. In this study a rigorous set of experiments on the quasi-static deformation behaviour of a Ti-6Al-4 V alloy sheet sample at room temperature was conducted for various loading conditions and a constitutive material model developed. To quantify the anisotropy and asymmetry properties, tensile and compression tests were carried out for different specimen orientations. To examine the Bauschinger effect and the transient hardening behaviour in - plane tensile - compression and compression - tensile tests were performed. Balanced biaxial and plane strain tension tests were conducted to construct and validate the yield surface of the Ti-6Al-4 V alloy sheet sample at room temperature. A recently proposed anisotropic elastic-plastic constitutive material model, so-called HAH, was employed to describe the behaviour, in particular for load reversals. The HAH yield surface is composed of a stable component, which includes plastic anisotropy and is distorted by a fluctuating component. The key of the formulation is the use of a suitable yield function that reproduces the experimental observations well for the stable component. Meanwhile, the rapid evolution of the material structure must be captured at the macro - scale level by the fluctuating component embedded in the HAH model. Compared to conventional hardening equations, the proposed model leads to higher accuracy in predicting the Bauschinger effect and the transient hardening behaviour for the Ti-6Al-4 V sheet sample tested at room temperature. (C) 2015 Elsevier Ltd. All rights reserved.1167Ysciescopu

    Association between birth weight and visceral fat in adults

    Get PDF
    Background: Several studies reported inverse associations between birth weight and central adiposity in adults. However, few studies investigated the contributions of different abdominal fat compartments. Objective: We examined associations between birth weight and adult visceral and subcutaneous abdominal fat in the population-based Fenland study. Design: A total of 1092 adults (437 men and 655 women) aged 3055 y had available data on reported birth weight, standard anthropometric measures, and visceral and subcutaneous abdominal fat estimated by ultrasound. In a subgroup (n = 766), dual-energy X-ray absorptiometry assessment of total abdominal fat was performed. Linear regression models were used to analyze relations between birth weight and the various fat variables adjusted for sex, age, education, smoking, and body mass index (BMI). Results: After adjustment for adult BMI, there was an inverse association between birth weight and total abdominal fat [B (partial regression coefficient expressed as SD/1-kg change in birth weight) = -0.09, P = 0.002] and visceral fat (B = -0.07, P = 0.01) but not between birth weight and subcutaneous abdominal fat (B = -0.01, P = 0.3). Tests for interaction showed that adult BMI modified the association between birth weight and visceral fat (P for interaction = 0.01). In stratified analysis, the association between birth weight and visceral fat was apparent only in individuals with the highest BMI tertile (B = -0.08, P = 0.04). Conclusions: The inverse association between birth weight and adult abdominal fat appeared to be specific to visceral fat. However, associations with birth weight were apparent only after adjustment for adult BMI. Therefore, we suggest that rapid postnatal weight gain, rather than birth weight alone, leads to increased visceral fat. Am J Clin Nutr 2010; 92: 347-52

    Intramolecular monomer-on-monomer (MoM) Mitsunobu cyclization for the synthesis of benzofused thiadiazepine-dioxides

    Get PDF
    The utilization of a monomer-on-monomer (MoM) intramolecular Mitsunobu cyclization reaction employing norbornenyl-tagged (Nb-tagged) reagents is reported for the synthesis of benzofused thiadiazepine-dioxides. Facile purification was achieved viaring-opening metathesis (ROM) polymerization initiated by one of three metathesis catalyst methods: (i) free metathesis catalyst, (ii) surface-initiated catalyst-armed silica, or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles
    • ā€¦
    corecore