205 research outputs found

    Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein g (PspG)

    Get PDF
    The phage shock protein operon (pspABCDE) of Escherichia coli is strongly up-regulated in response to overexpression of the filamentous phage secretin protein IV (pIV) and by many other stress conditions including defects in protein export. PspA has an established role in maintenance of the proton-motive force of the cell under stress conditions. Here we present evidence for a new member of the phage shock response in E. coli. Using transcriptional profiling, we show that the synthesis of pIV in E. coli leads to a highly restricted response limited to the up-regulation of the psp operon genes and yjbO. The psp operon and yjbO are also up-regulated in response to pIV in Salmonella enterica serovar Typhimurium. yjbO is a highly conserved gene found exclusively in bacteria that contain a psp operon but is physically unlinked to the psp operon. yjbO encodes a putative inner membrane protein that is co-controlled with the psp operon genes and is predicted to be an effector of the psp response in E. coli. We present evidence that yjbO expression is driven by sigma(54)-RNA polymerase, activated by PspF and integration host factor, and negatively regulated by PspA. PspF specifically regulates only members of the PspF regulon: pspABCDE and yjbO. We found that increased expression of YjbO results in decreased motility of bacteria. Because yjbO is co-conserved and co-regulated with the psp operon and is a member of the phage shock protein F regulon, we propose that yjbO be renamed pspG

    Systems analysis of transcription factor activities in environments with stable and dynamic oxygen concentrations.

    Get PDF
    Understanding gene regulation requires knowledge of changes in transcription factor (TF) activities. Simultaneous direct measurement of numerous TF activities is currently impossible. Nevertheless, statistical approaches to infer TF activities have yielded non-trivial and verifiable predictions for individual TFs. Here, global statistical modelling identifies changes in TF activities from transcript profiles of Escherichia coli growing in stable (fixed oxygen availabilities) and dynamic (changing oxygen availability) environments. A core oxygen-responsive TF network, supplemented by additional TFs acting under specific conditions, was identified. The activities of the cytoplasmic oxygen-responsive TF, FNR, and the membrane-bound terminal oxidases implied that, even on the scale of the bacterial cell, spatial effects significantly influence oxygen-sensing. Several transcripts exhibited asymmetrical patterns of abundance in aerobic to anaerobic and anaerobic to aerobic transitions. One of these transcripts, ndh, encodes a major component of the aerobic respiratory chain and is regulated by oxygen-responsive TFs ArcA and FNR. Kinetic modelling indicated that ArcA and FNR behaviour could not explain the ndh transcript profile, leading to the identification of another TF, PdhR, as the source of the asymmetry. Thus, this approach illustrates how systematic examination of regulatory responses in stable and dynamic environments yields new mechanistic insights into adaptive processes

    Measurement of Proton Leak in Isolated Mitochondria.

    Get PDF
    Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton leaks. In this chapter, we present a method to measure proton leak activity in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasized

    Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria

    Get PDF
    Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins

    Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment

    Get PDF
    Background: Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Methods and Findings: Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Conclusion: Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions

    Mitochondrial Uncoupling Inhibits p53 Mitochondrial Translocation in TPA-Challenged Skin Epidermal JB6 Cells

    Get PDF
    The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer

    Novel functions and regulation of cryptic cellobiose operons in Escherichia coli

    Get PDF
    Presence of cellobiose as a sole carbon source induces mutations in the chb and asc operons of Escherichia coli and allows it to grow on cellobiose. We previously engineered these two operons with synthetic constitutive promoters and achieved efficient cellobiose metabolism through adaptive evolution. In this study, we characterized two mutations observed in the efficient cellobiose metabolizing strain: duplication of RBS of ascB gene, (beta-glucosidase of asc operon) and nonsense mutation in yebK, (an uncharacterized transcription factor). Mutations in yebK play a dominant role by modulating the length of lag phase, relative to the growth rate of the strain when transferred from a rich medium to minimal cellobiose medium. Mutations in ascB, on the other hand, are specific for cellobiose and help in enhancing the specific growth rate. Taken together, our results show that ascB of the asc operon is controlled by an internal putative promoter in addition to the native cryptic promoter, and the transcription factor yebK helps to remodel the host physiology for cellobiose metabolism. While previous studies characterized the stress-induced mutations that allowed growth on cellobiose, here, we characterize the adaptation-induced mutations that help in enhancing cellobiose metabolic ability. This study will shed new light on the regulatory changes and factors that are needed for the functional coupling of the host physiology to the activated cryptic cellobiose metabolismopen1

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells

    The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth

    Get PDF
    Hydrogen sulfide (H2S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H2S and encounter high H2S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O2-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo3 enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo3 oxidase is inhibited by sulfide with half-maximal inhibitory concentration IC50=1.1±0.1μM, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58μM. In E. coli respiratory mutants, both O2-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo3 oxidase alone, but unaffected by ≤200μM sulfide when either bd enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O2- consumption and growth in E. coli and possibly other bacteria. The impact of this discovery is discussed

    Differences in efficacy of monepantel, derquantel and abamectin against multi-resistant nematodes of sheep

    Get PDF
    Drug resistance has become a global phenomenon in gastrointestinal nematodes of sheep, particularly resistance to macrocyclic lactones. New anthelmintics are urgently needed for both the control of infections with multi-resistant nematodes in areas where classical anthelmintics are no longer effective, and the prevention of the spread of resistance in areas where the problem is not as severe. Recently, two new active ingredients became commercially available for the treatment of nematode infections in sheep, monepantel (Zolvix®) and derquantel, the latter used only in a formulated combination with the macrocyclic lactone, abamectin (Startect®). In order to assess the potential of the new actives for the control and prevention of spread of anthelmintic resistance, two characterized multi-resistant field isolates from Australia were used in a GLP (good laboratory practice) conducted efficacy study in sheep. Eight infected sheep in each group were treated orally according to the product labels with 2.5 mg/kg body weight monepantel, 0.2 mg/kg abamectin, or with the combination of 2.0 mg/kg derquantel and 0.2 mg/kg abamectin. The results demonstrate that monepantel was fully effective against multi-resistant species, Trichostrongylus colubriformis and Haemonchus contortus (99.9%). In contrast, the combination of derquantel and abamectin was effective against T. colubriformis (99.9%), but was not effective against larval stages of the barber's pole worm H. contortus (18.3%)
    corecore