17 research outputs found

    Age influence on mice lung tissue response to <i>Aspergillus fumigatus</i> chronic exposure

    Get PDF
    [b]Introduction and objective[/b]. Exposure to conidia of [i]Aspergillus fumigatus[/i] was described as a causative factor of a number of the respiratory system diseases, including asthma, chronic eosinophilic pneumonia, hypersensitivity pneumonitis and bronchopulmonary aspergillosis. The study investigates the effects of the repeated exposure to [i]A. fumigatus[/i] in mice pulmonary compartment. Our work tackles two, so far insufficiently addressed, important aspects of interaction between affected organism and[i] A. fumigatus[/i]: 1) recurrent character of exposure (characteristic for pathomechanism of the abovementioned disease states) and 2) impact of aging, potentially important for the differentiation response to an antigen. [b]Materials and methods[/b]. In order to dissect alterations of the immune system involved with both aging and chronic exposure to [i]A. fumigatus[/i], we used 3- and 18-month-old C57BL/6J mice exposed to repeated[i] A. fumigatus[/i] inhalations for 7 and 28 days. Changes in lung tissue were monitored by histological and biochemical evaluation. Concentration of pro- and anti-inflammatory cytokines in lung homogenates was assessed by ELISA tests. [b]Results and conclusions. [/b]Our study demonstrated that chronic inflammation in pulmonary compartment, characterized by the significant increase of proinflammatory cytokines (IL1, IL6, IL10) levels, was the dominant feature of mice response to repeated [i]A. fumigatus[/i] inhalations. The pattern of cytokines' profile in the course of exposure was similar in both age groups, however in old mice the growth of the cytokines' levels was more pronounced (especially in case of IL1)

    Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle

    Get PDF
    The genus Pseudooceanicola from the alphaproteobacterial Roseobacter group currently includes ten validated species. We herein describe strain Lw-13eT, the first Pseudooceanicola species from marine macroalgae, isolated from the brown alga Fucus spiralis abundant at European and North American coasts. Physiological and pangenome analyses of Lw-13eT showed corresponding adaptive features. Adaptations to the tidal environment include a broad salinity tolerance, degradation of macroalgae-derived substrates (mannitol, mannose, proline), and resistance to several antibiotics and heavy metals. Notably, Lw-13eT can degrade oligomeric alginate via PL15 alginate lyase encoded in a polysaccharide utilization locus (PUL), rarely described for roseobacters to date. Plasmid localization of the PUL strengthens the importance of mobile genetic elements for evolutionary adaptations within the Roseobacter group. PL15 homologs were primarily detected in marine plant-associated metagenomes from coastal environments but not in the open ocean, corroborating its adaptive role in algae-rich habitats. Exceptional is the tolerance of Lw-13eT against the broad-spectrum antibiotic tropodithietic acid, produced by Phaeobacter spp. co-occurring in coastal habitats. Furthermore, Lw-13eT exhibits features resembling terrestrial plant-bacteria associations, i.e. biosynthesis of siderophores, terpenes and volatiles, which may contribute to mutual bacteria-algae interactions. Closest described relative of Lw-13eT is Pseudopuniceibacterium sediminis CY03T with 98.4% 16S rRNA gene sequence similarity. However, protein sequence-based core genome phylogeny and average nucleotide identity indicate affiliation of Lw-13eT with the genus Pseudooceanicola. Based on phylogenetic, physiological and (chemo)taxonomic distinctions, we propose strain Lw-13eT (=DSM 29013T = LMG 30557T) as a novel species with the name Pseudooceanicola algae

    Diagnostic Performance of Plasma DNA Methylation Profiles in Lung Cancer, Pulmonary Fibrosis and COPD

    No full text
    Disease-specific alterations of the cell-free DNA methylation status are frequently found in serum samples and are currently considered to be suitable biomarkers. Candidate markers were identified by bisulfite conversion-based genome-wide methylation screening of lung tissue from lung cancer, fibrotic ILD, and COPD. cfDNA from 400 μl serum (n = 204) served to test the diagnostic performance of these markers. Following methylation-sensitive restriction enzyme digestion and enrichment of methylated DNA via targeted amplification (multiplexed MSRE enrichment), a total of 96 markers were addressed by highly parallel qPCR. Lung cancer was efficiently separated from non-cancer and controls with a sensitivity of 87.8%, (95%CI: 0.67–0.97) and specificity 90.2%, (95%CI: 0.65–0.98). Cancer was distinguished from ILD with a specificity of 88%, (95%CI: 0.57–1), and COPD from cancer with a specificity of 88% (95%CI: 0.64–0.97). Separation of ILD from COPD and controls was possible with a sensitivity of 63.1% (95%CI: 0.4–0.78) and a specificity of 70% (95%CI: 0.54–0.81). The results were confirmed using an independent sample set (n = 46) by use of the four top markers discovered in the study (HOXD10, PAX9, PTPRN2, and STAG3) yielding an AUC of 0.85 (95%CI: 0.72–0.95). This technique was capable of distinguishing interrelated complex pulmonary diseases suggesting that multiplexed MSRE enrichment might be useful for simple and reliable diagnosis of diverse multifactorial disease states

    N-Acylated amino acid methyl esters from marine Roseobacter group bacteria

    No full text
    Bacteria of the Roseobacter group (Rhodobacteraceae) are important members of many marine ecosystems. Similar to other Gram-negative bacteria many roseobacters produce N-acylhomoserine lactones (AHLs) for communication by quorum sensing systems. AHLs regulate different traits like cell differentiation or antibiotic production. Related N-acylalanine methyl esters (NAMEs) have been reported as well, but so far only from Roseovarius tolerans EL-164. While screening various roseobacters isolated from macroalgae we encountered four strains, Roseovarius sp. D12_1.68, Loktanella sp. F13, F14 and D3 that produced new derivatives and analogs of NAMEs, namely N-acyl-2-aminobutyric acid methyl esters (NABME), N-acylglycine methyl esters (NAGME), N-acylvaline methyl esters (NAVME), as well as for the first time a methyl-branched NAME, N-(13-methyltetradecanoyl)alanine methyl ester. These compounds were detected by GC–MS analysis, and structural proposals were derived from the mass spectra and by derivatization. Verification of compound structures was performed by synthesis. NABMEs, NAVMEs and NAGMEs are produced in low amounts only, making mass spectrometry the method of choice for their detection. The analysis of both EI and ESI mass spectra revealed fragmentation patterns helpful for the detection of similar compounds derived from other amino acids. Some of these compounds showed antimicrobial activity. The structural similarity of N-acylated amino acid methyl esters and similar lipophilicity to AHLs might indicate a yet unknown function as signalling compounds in the ecology of these bacteria, although their singular occurrence is in strong contrast to the common occurrence of AHLs. Obviously the structural motif is not restricted to Roseovarius spp. and occurs also in other genera

    N-Acylated amino acid methyl esters from marine group bacteria.

    No full text
    The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation

    Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension

    Get PDF
    Primary pulmonary hypertension is a fatal disease causing progressive right heart failure within 3 years after diagnosis. We describe a new concept for treatment of the disease using vasoactive intestinal peptide, a neuropeptide primarily functioning as a neurotransmitter that acts as a potent systemic and pulmonary vasodilator. Our rationale is based on the finding of a deficiency of the peptide in serum and lung tissue of patients with primary pulmonary hypertension, as evidenced by radioimmunoassay and immunohistochemistry. The relevance of this finding is underlined by an upregulation of corresponding receptor sites as shown by Northern blot analysis, Western blot analysis, and immunological techniques. Consequently, the substitution with the hormone results in substantial improvement of hemodynamic and prognostic parameters of the disease without side effects. It decreased the mean pulmonary artery pressure in our eight study patients, increased cardiac output, and mixed venous oxygen saturation. Our data provide enough proof for further investigation of vasoactive intestinal peptide and its role in primary pulmonary hypertension

    Epithelial to mesenchymal transition-related proteins ZEB1, \u3b2-catenin, and \u3b2-tubulin-III in idiopathic pulmonary fibrosis

    No full text
    Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tub\u3b23), ZEB1, and \u3b2-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tub\u3b23, and \u3b2-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tub\u3b23, ZEB1, and \u3b2-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.Modern Pathology advance online publication, 2 September 2016; doi:10.1038/modpathol.2016.147
    corecore